4.7 Article

Mechanism selection for spontaneous grain refinement in undercooled metallic melts

期刊

ACTA MATERIALIA
卷 77, 期 -, 页码 76-84

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.05.043

关键词

Rapid solidification; Undercooling; Dendrite growth; Dendrite orientation transition; Spontaneous grain refinement

资金

  1. Engineering and Physical Sciences Research Council [EP/H048685/1] Funding Source: researchfish
  2. EPSRC [EP/H048685/1] Funding Source: UKRI

向作者/读者索取更多资源

In a previous paper (Castle et al., 2014) [17], we employed a melt fluxing technique to study the velocity-undercooling relationship and microstructural development of a Cu-8.9 wt.% Ni alloy in order to investigate the fundamental mechanism behind the rapid solidification phenomenon of spontaneous grain refinement. A number of growth transitions were identified with increasing undercooling, including an extended dendrite orientation transition through: fully (100)-oriented -> multiply twinned, mixed (100)1(111)-oriented fully -> < 111 >-oriented. Here, we present the results of an identical study of a Cu-Ni alloy of lower Ni content and observe a similar set of growth transitions, with some notable differences. In particular, three distinct grain refinement mechanisms have been observed between the two alloys, including: recrystallization, dendrite fragmentation and dendritic seaweed fragmentation. It appears that the mechanism selected depends strongly upon the original growth structure present, which we suggest is dictated by the balance between the capillary and kinetic anisotropies; with the addition of Ni to Cu either increasing the strength of the kinetic anisotropy, decreasing the strength of the capillary anisotropy, or a combination of both. The unambiguous identification of three different spontaneous grain refinement mechanisms in two closely related alloys is significant as it may help to resolve some of the debate surrounding the true grain refinement mechanism. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据