4.7 Article

Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion

期刊

ACTA MATERIALIA
卷 63, 期 -, 页码 169-179

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.10.022

关键词

Solute nanostructures; Strength; Grain refinement; Al alloy; HPT

资金

  1. Australian Research Council Centre
  2. Russian Federal Ministry for Education and Science (RZV) [14.B25.31.0017]

向作者/读者索取更多资源

The effects of high-pressure torsion (HPT) processing on an Al-Mg-Si alloy (AA6060) have been investigated comprehensively. We show that the processing temperature has complex effects on the strength, grain refinement and solute nanostructures of the alloy. Ten-revolution HPT processing at room temperature produced the highest yield strength of 475 MPa, which is similar to a high-strength Al alloy. However, processing at 100 degrees C produced the finest grains due to the strong solute segregation to grain boundaries and the formation of high-density precipitates that pin grain boundaries. Processing at 180 degrees C led to significant decomposition of the alloy and the formation of coarse precipitates. This research demonstrates that solute nanostructures provide key information for unravelling the origins of HPT-induced strengthening and grain refinement, and reveals the important opportunities for engineering solute nanostructures to enhance grain refinement in HPT processing. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Microscopy

Revealing latent pole and zone line information in atom probe detector maps using crystallographically correlated metrics

A. J. Breen, A. C. Day, B. Lim, W. J. Davids, S. P. Ringer

Summary: In this study, a method was developed to enhance the contrast of poles and zone lines in atom probe data by plotting crystallographically correlated metrics. This method can be applied to a wide range of crystalline datasets where crystallographic information is not readily apparent from existing methods, and it helps to gain a deeper understanding of field evaporation behavior during atom probe experiments.

ULTRAMICROSCOPY (2023)

Article Chemistry, Physical

Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains

Elena V. Bobruk, Maxim Yu. Murashkin, Ilnar A. Ramazanov, Vil U. Kazykhanov, Ruslan Z. Valiev

Summary: This study aims to achieve superplasticity of ultrafine-grained (UFG) Al 2024 alloy at temperatures lower than traditional commercial Al alloys. Complex tensile tests were conducted at various temperatures and strain rates, and the UFG alloy exhibited superplastic behavior at 240 and 270 degrees C. The UFG alloy also demonstrated higher strength compared to the standard strengthening heat treatment T6.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

Novel effects of grain size and ion implantation on grain boundary segregation in ion irradiated austenitic steel

Andrew K. Hoffman, Yongfeng Zhang, Maalavan Arivu, Li He, Kumar Sridharan, Yaqiao Wu, Rinat K. Islamgaliev, Ruslan Z. Valiev, Haiming Wen

Summary: In nuclear reactor environments, nanocrystalline 304 stainless steel exhibits unique radiation-induced segregation behavior with the enrichment of Cr at grain boundaries. Lattice-based atomic kinetic Monte Carlo simulations reveal the influences of grain size, injected interstitials, and self-ion injection on grain boundary segregation.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Phosphorus and transition metal co-segregation in ferritic iron grain boundaries and its effects on cohesion

Han Lin Mai, Xiang-Yuan Cui, Daniel Scheiber, Lorenz Romaner, Simon P. Ringer

Summary: This study investigates the segregation and co-segregation effects of phosphorus (P) and transition metal (TM) elements at grain boundaries (GBs) in steels. The findings reveal that while P alone is unlikely to cause intergranular fracture, its stronger segregation binding compared to TMs can explain its ubiquitous presence at GBs. The repulsive interactions and strong segregation binding of P deplete cohesion-enhancing solutes at general GBs and favor cohesion-lowering P-TM co-segregation combinations. These mechanisms contribute to P-induced temper embrittlement in alloyed steels and have significant implications for GB engineering.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

An exceptionally strong, ductile and impurity-tolerant austenitic stainless steel prepared by laser additive manufacturing

Yong Chen, Hongmei Zhu, Pengbo Zhang, Zhongchang Wang, Meng Wang, Gang Sha, He Lin, Jingyuan Ma, Zhenyuan Zhang, Yong Song, Pengfei Zheng, Lihua Zhou, Sheng Li, Hao Liu, Longzhang Shen, Changjun Qiu

Summary: The effective strategy to enhance impurity tolerance in structural steel is to increase solidification rate. By using laser additive manufacturing, we successfully engineered C, N and O with high contents as interstitial atoms coordinated with Cr in the form of short-range ordered assembly, resulting in the development of an impurity-tolerant supersaturated austenitic stainless steel with high strength, good ductility, enhanced corrosion resistance, and acceptable thermal stability.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Mechanism of room-temperature superplasticity in ultrafine-grained Al-Zn alloys

Zizheng Song, Ranming Niu, Xiangyuan Cui, Elena V. Bobruk, Maxim Yu. Murashkin, Nariman A. Enikeev, Ji Gu, Min Song, Vijay Bhatia, Simon P. Ringer, Ruslan Z. Valiev, Xiaozhou Liao

Summary: Superplastic deformation of polycrystalline materials is usually achieved by diffusion-assisted grain boundary sliding at high temperatures. Recent research has shown that room-temperature superplasticity can be achieved in ultrafine-grained Al-Zn based alloys, but the underlying mechanism is still unclear. This study utilized in-situ tensile straining, electron microscopy characterization, and atomistic density functional theory simulation to reveal that the superplasticity at room temperature is achieved by grain boundary sliding and grain rotation, facilitated by the continuous diffusion of Zn. The diffusion of Zn atoms from grains to grain boundaries forms a Zn nanolayer, acting as a solid lubricant to lower the energy barrier of grain boundary sliding.

ACTA MATERIALIA (2023)

Article Multidisciplinary Sciences

Strong and ductile titanium-oxygen-iron alloys by additive manufacturing

Tingting Song, Zibin Chen, Xiangyuan Cui, Shenglu Lu, Hansheng Chen, Hao Wang, Tony Dong, Bailiang Qin, Kang Cheung Chan, Milan Brandt, Xiaozhou Liao, Simon P. P. Ringer, Ma Qian

Summary: This study demonstrates a series of titanium-oxygen-iron compositions with outstanding tensile properties, achieved through alloy design and additive manufacturing. These alloys, strengthened by the abundant elements of oxygen and iron, offer potential for diverse applications and the industrial-scale use of waste sponge titanium. Additionally, they have significant economic and environmental potential for reducing the carbon footprint of energy-intensive sponge titanium production.

NATURE (2023)

Article Mechanics

Determination of Fatigue Failure Parameters from the Depth of Plastic Zones Beneath the Fracture Surface

G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, R. Z. Valiev, I. N. Pigaleva

Summary: Fatigue failure is the most common type of failure in various engineering systems, and its study is crucial for predicting system's service life. The investigation of fatigue failure in new ultrafine-grained nanostructured metal materials is particularly interesting. This study demonstrates the possibility of determining the maximum cycle stress and cycle asymmetry coefficient from the depth of plastic zones beneath the surface of fatigue fractures.

PHYSICAL MESOMECHANICS (2023)

Article Multidisciplinary Sciences

Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts

Yangyang Liu, Can Li, Chunhui Tan, Zengxia Pei, Tao Yang, Shuzhen Zhang, Qianwei Huang, Yihan Wang, Zheng Zhou, Xiaozhou Liao, Juncai Dong, Hao Tan, Wensheng Yan, Huajie Yin, Zhao-Qing Liu, Jun Huang, Shenlong Zhao

Summary: The chlor-alkali process is important in the chemical industry due to the diverse usage of chlorine gas. However, current chlorine evolution reaction (CER) electrocatalysts have inefficiencies that result in high energy consumption. This study presents a highly active single-atom ruthenium catalyst for the electro synthesis of chlorine in seawater-like solutions. The catalyst exhibits low overpotential and high stability and selectivity, offering potential for efficient chlorine production from seawater.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Microstructural Transformation and Enhanced Strength of Wire-Feed Electron-Beam Additive Manufactured Ti-6Al-4V Alloy Induced by High-Pressure Torsion

Roman R. Valiev, Alexey V. Panin, Emil I. Usmanov, Yana N. Savina, Ruslan Z. Valiev

Summary: This study demonstrates for the first time the influence of high-pressure torsion (HPT) on microstructural refinement and mechanical strength of Ti-6Al-4V titanium alloy produced by wire-feed electron-beam additive manufacturing. HPT processing results in an ultrafine-grained (UFG) structure and significantly increases the microhardness of the alloy. Microscopic studies reveal that the UFG structure consists predominantly of alpha and beta phases.

ADVANCED ENGINEERING MATERIALS (2023)

Article Engineering, Mechanical

Hierarchical structured Zn-Cu-Li alloy with high strength and ductility and its deformation mechanisms

Xiyuan Zhang, Guisen Liu, Linfeng Jiang, Dian Jiao, Jimiao Jiang, Chun Chen, Zhiqiang Gao, Jialin Niu, Gang Sha, Yao Shen, Hua Huang, Guangyin Yuan

Summary: In this study, a Zn-2Cu-0.8Li alloy with both high strength and high ductility is developed via a unique hierarchical structure. The alloy consists of a hard beta-LiZn4 matrix, a soft eta-Zn phase, and dispersive epsilon-CuZn4 nanoprecipitates. The alloy exhibits excellent mechanical properties due to the unique microstructure and shows great potential for broader biomedical applications.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Excellent strength-ductility combination of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at cryogenic temperatures

Xuzhou Gao, Wei Jiang, Yiping Lu, Zhigang Ding, Jizi Liu, Wei Liu, Gang Sha, Tongming Wang, Tingju Li, Isaac T. H. Chang, Yonghao Zhao

Summary: In this study, a face-centered cubic non-equiatomic Cr26Mn20Fe20Co20Ni14 high-entropy alloy with a low stacking fault energy was prepared and demonstrated excellent strength and ductility over a wide temperature range, including cryogenic temperatures. The microstructural analysis revealed different deformation mechanisms at different temperatures, contributing to the superior tensile properties at cryogenic temperatures. This study provides experimental evidence for the potential cryogenic applications of high-entropy alloys.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Realization of High Magnetization in Artificially Designed Ni/NiO Layers through Exchange Coupling

Xiang Ding, Xiangyuan Cui, Li-Ting Tseng, Yiren Wang, Jiangtao Qu, Zengji Yue, Lina Sang, Wai Tung Lee, Xinwei Guan, Nina Bao, Ci Sathish, Xiaojiang Yu, Shibo Xi, Mark B. H. Breese, Rongkun Zheng, Xiaolin Wang, Lan Wang, Tom Wu, Jun Ding, Ajayan Vinu, Simon P. Ringer, Jiabao Yi

Summary: In this work, Ni/NiO nanocomposites were fabricated by depositing Ni and NiO thin layers alternately and annealing them at specific temperatures. It was found that the samples annealed at 473 K exhibited a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3). Material characterizations and density functional theory calculations confirmed that the NiO nanoclusters embedded in the Ni matrix were primarily responsible for the high magnetization, as they were ferromagnetically coupled with Ni.
Article Microscopy

Characterising the performance of an ultrawide field-of-view 3D atom probe

Levi Tegg, Andrew J. Breen, Siyu Huang, Takanori Sato, Simon P. Ringer, Julie M. Cairney

Summary: The CAMECA Invizo 6000 atom probe microscope utilizes unique ion optics, including dual antiparallel deep ultraviolet lasers, a flat counter electrode, and various lenses, to enhance the field-of-view without compromising the mass resolving power. This study demonstrates the performance of the Invizo 6000 through three material case studies, using both air and vacuum-transfer between instruments. The results show that the Invizo 6000 significantly improves the field-of-view compared to a LEAP 4000 X Si and enhances specimen yield, particularly for difficult samples like oxides.

ULTRAMICROSCOPY (2023)

Article Materials Science, Multidisciplinary

On dysprosium utilisation in multi-main-phase Nd-Dy-Fe-B magnets with core-shell microstructures

Zhiheng Zhang, Hansheng Chen, Jiaying Jin, Bryan Lim, Xiaolian Liu, Wei Li, Mi Yan, Simon P. Ringer

Summary: This study presents a multi-main-phase Nd-Dy-Fe-B magnet with a Dy-lean core-Dy-rich shell microstructure, which exhibits high magnetic performance and thermal stability. The formation mechanism of the core-shell microstructure is explained through experimental and simulation analysis, highlighting the potential application of the magnet in large-scale production.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)