4.7 Article

Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging

期刊

ACTA MATERIALIA
卷 61, 期 12, 页码 4607-4618

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.04.030

关键词

Twinning-induced plasticity (TWIP) steel; Mechanical properties; Hydrogen embrittlement; Crack propagation; Electron channeling contrast imaging

资金

  1. Elements Strategy Initiative for Structural Materials (ESISM) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan
  2. Japan Society for the Promotion of Science

向作者/读者索取更多资源

We investigated the hydrogen embrittlement of a Fe-18Mn-1.2%C (wt.%) twinning-induced plasticity steel, focusing on the influence of deformation twins on hydrogen-assisted cracking. A tensile test under ongoing hydrogen charging was performed at low strain rate (1.7 x 10(-6) s(-1)) to observe hydrogen-assisted cracking and crack propagation. Hydrogen-stimulated cracks and deformation twins were observed by electron channeling contrast imaging. We made the surprising observation that hydrogen-assisted cracking was initiated both at grain boundaries and also at deformation twins. Also, crack propagation occurred along both types of interfaces. Deformation twins were shown to assist intergranular cracking and crack propagation. The stress concentration at the tip of the deformation twins is suggested to play an important role in the hydrogen embrittlement of the Fe-Mn-C twining-induced plasticity steel. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Hydrogen-accelerated fatigue crack growth of equiatomic Fe-Cr-Ni-Mn-Co high-entropy alloy evaluated by compact tension testing

Motomichi Koyama, Shunsuke Mizumachi, Eiji Akiyama, Kaneaki Tsuzaki

Summary: The effect of hydrogen on the resistance to mechanically long fatigue crack growth in an equiatomic Fe-Cr-Ni-Mn-Co high-entropy alloy was investigated. Hydrogen charging resulted in accelerated intergranular crack growth via a plasticity-driven mechanism.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Materials Science, Multidisciplinary

Corrosion Monitoring of Carbon Steel in Non-Irradiated, Humidity-Controlled Environments Simulating Gamma-Ray Irradiation

Atsushi Omori, Saya Ajito, Hiroshi Abe, Kuniki Hata, Tomonori Sato, Yoshiyuki Kaji, Hiroyuki Inoue, Mitsumasa Taguchi, Hajime Seito, Eiji Tada, Shunichi Suzuki, Eiji Akiyama

Summary: The effect of oxidants, such as ozone, formed by the radiolysis of water on the corrosion of carbon steel in a humid environment was evaluated. The study found that ozone accelerated the corrosion of carbon steel, with corrosion rates increasing with relative humidity and ozone concentration.

MATERIALS TRANSACTIONS (2022)

Article Engineering, Mechanical

Transition mechanism of cycle- to time-dependent acceleration of fatigue crack-growth in 0.4 %C Cr-Mo steel in a pressurized gaseous hydrogen environment

Atsuki Setoyama, Yuhei Ogawa, Masami Nakamura, Yuya Tanaka, Tingshu Chen, Motomichi Koyama, Hisao Matsunaga

Summary: Increased strength levels result in accelerated fatigue crack growth caused by hydrogen. In the highest-strength material, the crack growth rate per cycle depends on the test frequency, proportional to load duration. The hydrogen-induced fatigue crack growth is due to stress-driven cracking along hierarchical martensite boundaries, caused by the degradation of interface strength as a result of competition between driving stress and resistance stress.

INTERNATIONAL JOURNAL OF FATIGUE (2022)

Article Chemistry, Physical

In situ 2D mapping of hydrogen entry into an Fe sheet under a droplet of NaCl solution using a hydrogenochromic sensor

Hiroshi Kakinuma, Saya Ajito, Tomohiko Hojo, Motomichi Koyama, Sachiko Hiromoto, Eiji Akiyama

Summary: In this study, the distribution of hydrogen entering an Fe sheet under a droplet of NaCl solution was successfully visualized using a hydrogenochromic sensor. The entry of hydrogen was initially difficult to confirm, but became observable as the corrosion progressed, with the preferential entry site corresponding to the rust-formed area. The study postulates that the decrease in pH due to hydrolysis reactions of Fe ions under the rust promotes the entry of hydrogen.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2022)

Article Materials Science, Multidisciplinary

Transformation-Induced Microcracks and Their Arrest with Different Deformation Temperatures in a Medium Mn Steel

Yutao Zhou, Motomichi Koyama, Tomohiko Hojo, Saya Ajito, Eiji Akiyama

Summary: In this study, the temperature dependence of microstructure and damage evolution in medium Mn steel was investigated. The results showed that deformation temperatures had a significant impact on the flow behavior, work hardening rate, and mechanical properties of the steel. Deformation-induced martensite acted as the initiation site of damage, and the critical strain and probability of damage initiation decreased with decreasing deformation temperature. Furthermore, the decrease in temperature deteriorated the micro-damage arrestability of ferrite, resulting in a transition from ductile to quasi-cleavage fractures.

METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE (2023)

Article Chemistry, Physical

Phase transformations and microstructure evolutions during depressurization of hydrogenated Fe-Mn-Si-Cr alloy

Rama Srinivas Varanasi, Motomichi Koyama, Hiroyuki Saitoh, Reina Utsumi, Toyoto Sato, Shin-ichi Orimo, Eiji Akiyama

Summary: The phase transformations and microstructure changes during the depressurization of non-hydrogenated and hydrogenated Fe-Mn-Si-Cr alloy were investigated. Understanding the effects of hydrogenation on the stability of the austenite phase in Fe-based alloys is crucial.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2023)

Article Nanoscience & Nanotechnology

Mechanical loading effect on the hydrogen uptake of tempered martensite steel: Elastic strain effect vs. plastic strain effect

Yota Masuda, Motomichi Koyama, Hiroshi Kakinuma, Eiji Akiyama

Summary: The effects of mechanical loading on hydrogen uptake were studied using thermal desorption experiments. The diffusible hydrogen content increased with increasing elastic and plastic strains, with a larger increase per elastic strain than per plastic strain.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Materials Science, Multidisciplinary

Influence of post-oxidizing treatment on passivation performance on the spin-coated titanium oxide films on crystalline silicon

Hao Luo, Van Hoang Nguyen, Kazuhiro Gotoh, Saya Ajito, Tomohiko Hojo, Yasuyoshi Kurokawa, Eiji Akiyama, Noritaka Usami

Summary: This study investigates the effect of post-oxidizing treatment (POT) on the structural, optical, and passivation performances of titanium oxide coated crystalline Si (c-Si) heterostructures prepared by the solution process. The results show that POT improves the passivation performance by oxidizing the TiOx film, c-Si surface, and forming POx.

THIN SOLID FILMS (2023)

Article Materials Science, Multidisciplinary

Environment-assisted cracking of AZ31 magnesium alloy in a borate buffer solution containing ammonium thiocyanate under various potentials

Saya Ajito, Tomohiko Hojo, Motomichi Koyama, Sachiko Hiromoto, Eiji Akiyama

Summary: The environment-assisted cracking behavior of AZ31 magnesium alloy was studied through tensile tests in a Na2B4O7·10H2O solution containing NH4SCN and in air at cathodic and corrosion potentials. Mechanical properties of AZ31 were unaffected by the environment at an initial strain rate of 10-4s-1, but degraded in the solution at an initial strain rate of 10-6s-1. Higher potentials resulted in smaller total elongation, while positive potential shift increased the average hydrogen absorption rate. These findings indicate that environment-assisted cracking becomes more severe under relatively high potential due to corrosion and enhanced hydrogen absorption.

CORROSION SCIENCE (2023)

Article Nanoscience & Nanotechnology

Temperature dependence of hydrogen-assisted damage evolution and fracture behavior in TRIP-aided bainitic ferrite steel

Yutao Zhou, Tomohiko Hojo, Motomichi Koyama, Saya Ajito, Eiji Akiyama

Summary: Hydrogen and deformation temperature have significant effects on micro-damage evolution and fracture behavior of TRIP-aided steel. Hydrogen uptake increases micro-damage density and changes fracture mode at different deformation temperatures.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Nanoscience & Nanotechnology

Mesoscale quantification of grain boundary character and local plasticity in hydrogen-assisted intergranular and intergranular-like cracking paths in tempered martensitic steel

Tingshu Chen, Motomichi Koyama, Takahiro Chiba, Eiji Akiyama, Kenichi Takai

Summary: The effects of the misorientation of prior austenite grain boundary (PAGB) segments on the local plasticity evolution in intergranular (IG) and IG-like fractures were investigated. The study found that low-angle and sigma 3 PAGB segments allow crack-tip blunting before crack growth.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)