4.7 Article

Experimental study and simulation of plastic deformation of zirconia-based ceramics in a pulsed electric current apparatus

期刊

ACTA MATERIALIA
卷 61, 期 7, 页码 2376-2389

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.01.008

关键词

Plastic deformation; Ceramics; Composites; Finite-element modelling; Pulsed electric current sintering

资金

  1. Research Fund Flanders (FWO)
  2. KU Leuven Research Council [F/02/096]
  3. Ministry for Education and Science, Youth and Sport of Ukraine [0107U001301]

向作者/读者索取更多资源

Plastic deformation by compression of cylindrically shaped zirconia (ZrO2)-based ceramics in a pulsed electrical current apparatus was studied using a combined experimental and theoretical approach. Both fully dense electrically insulating 3Y-ZrO2 and electrically conductive 3Y-ZrO2-TiCN 60/40 (vol.%) ceramics were subjected to a compressive load at temperatures above 1200 degrees C. Deformed non-conductive 3Y-ZrO2 samples were concave shaped, whereas the composite samples exhibited a different behaviour depending on the electrical current path within the set-up. A convex shape was obtained when the current was freely flowing through them, while they started to become concave shaped when the samples were separated from the graphite pressing punches by relatively low conductive silicon carbide disks. The secondary titanium carbonitride (TiCN) phase in the composite materials exhibited a grain boundary pinning effect, which limited coarsening of their microstructure. The influence of current flow on the shape of the deformed ceramic samples was interpreted in terms of the temperature distribution generated during hot deformation. Finite-element simulations, coupling thermal, electrical and mechanical fields, were used to explain the deformation behaviour of the different samples. A subsequently coupled thermal-electrical and mechanical analysis procedure was developed for this aim. Special attention was paid to the materials and interactions properties used during modelling. The modelling results are in good agreement with the experimental data, so that the developed finite-element approach and code can be used for the analysis of near net shaping of ceramic parts assisted by an electrical field. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Thermal Recovery of the Electrochemically Degraded LiCoO2/ Li7La3Zr2O12:Al,Ta Interface in an All-Solid-State Lithium Battery

Martin Ihrig, Liang-Yin Kuo, Sandra Lobe, Alexander M. Laptev, Che-an Lin, Chia-hao Tu, Ruijie Ye, Payam Kaghazchi, Luca Cressa, Santhana Eswara, Shih-kang Lin, Olivier Guillon, Dina Fattakhova-Rohlfing, Martin Finsterbusch

Summary: All-solid-state lithium batteries are promising for energy storage, but suffer from performance degradation during cycling. This study shows that thermal recovery can recrystallize the amorphized interface, restoring the cell performance. Detailed analysis and thermodynamic modeling provide a comprehensive understanding of the structural and chemical changes. Through thermal recovery, more than 80% of the initial storage capacity can be recovered, offering potential for cost-efficient recycling of ceramic all-solid-state batteries.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Materials Science, Ceramics

Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite

Maria Wisniewska, Alexander M. Laptev, Mateusz Marczewski, Volf Leshchynsky, Grzegorz Lota, Ilona Acznik, Luca Celotti, Alex Sullivan, Miroslaw Szybowicz, Dariusz Garbiec

Summary: Carbon nanotubes (CNTs) are widely used in ceramic-matrix composites (CMC) as a filler. They have high thermal conductivity individually, but only have a moderate influence on the thermal conductivity of CMCs. However, even a small quantity of CNTs can significantly increase the electrical conductivity of CMCs. The present study investigates the influence of multi-wall carbon nanotubes (MWCNTs) on the thermal and electrical conductivity of ZrO2-CNTs composites, revealing the contradictory effects of CNTs on these properties.

CERAMICS INTERNATIONAL (2023)

Article Materials Science, Ceramics

Influence of varying carbon content in (V,Nb,Ta,Ti,W)C high entropy carbide- Ni based cermets on densification, microstructure, mechanical properties and phase stability

Zahid Anwer, Jozef Vleugels, Amit Datye, Shuhan Zhang, Shuigen Huang

Summary: The influence of varying carbon content on the microstructure and mechanical properties in the (V, Nb,Ta,Ti,W)C -12 vol% Ni system was investigated. The results revealed the impact of carbon content on eutectic temperature, carbide grain size and morphology, phase stability, and mechanical properties in high entropy carbide (V,Nb,Ta,Ti,W)C-Ni cermets. Additionally, the phase stability and chemical reactivity with steel of the High Entropy Carbide (HEC) cermets were assessed and compared to conventional WC-Co cemented carbides at 1200 degrees C.

CERAMICS INTERNATIONAL (2023)

Article Materials Science, Multidisciplinary

Evaluation of 3D-Printed Magnetic Materials For Additively-Manufactured Electrical Machines

Ahmed Selema, Margherita Beretta, Matty Van Coppenolle, Hans Tiismus, Ants Kallaste, Mohamed N. Ibrahim, Marleen Rombouts, Jozef Vleugels, Leo A. I. Kestens, Peter Sergeant

Summary: Nowadays, surpassing conventional 2D laminated structures is crucial for enhancing the functionality of electrical machines in the design process. Additive manufacturing (AM) provides unparalleled 3D freedom for processing metal-based materials, optimizing weight and cost effectiveness. This study focuses on 3D printing and testing of ferromagnetic material. Different parts are built using silicon steel (Fe-3wt%Si) powder through various AM techniques, and their magnetic properties are measured and compared. The results demonstrate the potential of AM technology in manufacturing magnetic materials, as well as the good magnetic properties achieved from the 3D printed samples. The study also highlights the possibilities of 3D multi-material printing for electrical machines.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2023)

Article Nanoscience & Nanotechnology

Influence of Nb addition and process parameters on the microstructure and phase transformation behavior of NiTiNb ternary shape memory alloys fabricated by laser powder bed fusion

Rui Xi, Hao Jiang, Sergey Kustov, Zhihui Zhang, Guoqun Zhao, Kim Vanmeensel, Jan Van Humbeeck, Xiebin Wang

Summary: NiTiNb alloys were fabricated through L-PBF with powder mixtures of prealloyed NiTi and elemental Nb powders. The addition of Nb significantly altered the dependence of MTTs on L-PBF process parameters. The net effect of Nb addition is to lower MTTs, while Ni evaporation has the opposite effect. In NiTiNb3 alloys, factors that promote and suppress MTTs are almost completely compensated, resulting in a rather stable MTT despite variations in L-PBF process parameters.

SCRIPTA MATERIALIA (2023)

Article Chemistry, Physical

Ultrashort pulsed laser ablation of zirconia toughened alumina: Material removal mechanism and surface characteristics

Jide Han, Berfu Goksel, Shiva Mohajernia, Manuela Sonja Killian, Jozef Vleugels, Annabel Braem, Sylvie Castagne

Summary: Zirconia toughened alumina (ZTA) is commonly used in hip joint implants and cutting tools due to its unique properties. The difference in material properties between zirconia and alumina phases leads to the selectivity of phase melting and the disintegration of alumina grains during laser processing. This selective phase melting phenomenon makes the material removal mechanism of the nanocomposite significantly different from that of single-phase materials.

APPLIED SURFACE SCIENCE (2023)

Article Dentistry, Oral Surgery & Medicine

Layer characteristics in strength-gradient multilayered yttria-stabilized zirconia

Masanao Inokoshi, Hengyi Liu, Kumiko Yoshihara, Mao Yamamoto, Watcharapong Tonprasong, Yasuhiko Benino, Shunsuke Minakuchi, Jef Vleugels, Bart Van Meerbeek, Fei Zhang

Summary: This study investigated crystallography, translucency, phase content, microstructure and flexural strength of two commercial strength-gradient multilayered dental zirconia grades. The results showed that the 'enamel' layer contains a higher amount of c-ZrO2, resulting in higher translucency but lower flexural strength. The strength-gradient approach allowed for integration of monoliths with irreconcilable properties.

DENTAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Improved doping and densification of uranium oxide microspheres using starch as pore former

Gamze Colak, Gregory Leinders, Jef Vleugels, Remi Delville, Marc Verwerft

Summary: A hybrid route combining internal gelation and a single-step infiltration was investigated to prepare U1-yNdyO2-x sintered microspheres as a surrogate for U1-yAmyO2-x transmutation targets. The use of starch as a pore-forming agent in the internal gelation process for fabricating porous uranium oxide microspheres has been studied in detail. High accessible porosity levels were measured after calcination, allowing efficient infiltration behavior and achieving high average dopant levels up to y = 30 mol% after sintering.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Materials Science, Ceramics

Effect of carbon and tungsten content on the phase equilibria, microstructure, and mechanical properties of (Nb,W)C-Ni cermets

Jinhua Huang, Shuigen Huang, Jef Vleugels

Summary: By using thermodynamic simulation, NbC-Ni based cermets with different W and C additions were designed and sintered in liquid state, resulting in varied phase constitution, microstructure, and mechanical properties. Microscopic analysis revealed the presence of cubic (Nb,W)C solid solution, Ni alloy binder, and carbon-deficient phase in the cermets. Additionally, mechanical properties such as hardness, toughness, and strength were found to be influenced by the phases and NbC grain size.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2023)

Article Materials Science, Ceramics

Tough and damage-tolerant monolithic zirconia ceramics with transformation-induced plasticity by grain-boundary segregation

Maoyin Li, Bensu Tunca, Bart Van Meerbeek, Jef Vleugels, Fei Zhang

Summary: This study proposes a simpler and more controllable method to improve the mechanical properties of conventional ceria-stabilized tetragonal zirconia (Ce-TZP) by doping aliovalent oxides that can segregate at the zirconia-grain boundaries. It is found that doping with calcium and magnesium can change the microstructure and transformation behavior of the material, enabling ceramic materials to undergo inelastic deformation to a certain extent, thereby achieving the optimal combination of toughness, biaxial strength, and damage tolerance.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2023)

Article Engineering, Manufacturing

Revealing the precipitation behavior of crack-free TiB2/Al-Zn-Mg-Cu composites manufactured by Laser Powder Bed Fusion

Guichuan Li, Bensu Tunca, Seren Senol, Massimiliano Casata, Yi Wu, Zhe Chen, Kim Vanmeensel

Summary: The microstructural evolution and precipitation behavior in age-hardenable TiB2/Al-Zn-Mg-Cu composites manufactured using L-PBF were studied. The composites exhibited a fine equiaxed microstructure with TiB2 particles, resulting in improved hardness compared to unreinforced alloys. The precipitation behavior of the composite was accelerated, mainly due to heterogeneous precipitation on the TiB2 particles and enhanced diffusion along grain boundaries.

ADDITIVE MANUFACTURING (2023)

Article Materials Science, Multidisciplinary

Cu-infiltrated (Nb,W)C solid solution carbides

J. H. Huang, S. G. Huang, J. Vleugels

Summary: Binderless NbC with 0-25 wt% WC powder mixtures were pressureless sintered in vacuum at different temperatures to generate open porosity (Nb,W)C skeletons. The formation of residual minor amounts of W2C and WC was discussed and compared with thermodynamic predictions. The microstructure of the as-sintered homogeneous (Nb,W)C grains in the skeleton changed after Cu infiltration due to the partial dissolution of Nb. The properties of the as-sintered porous and Cu-infiltrated materials were evaluated and discussed.

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS (2023)

Article Materials Science, Multidisciplinary

Detecting irradiation-induced strain localisation on the microstructural level by means of high-resolution digital image correlation

D. Lunt, R. Thomas, D. Bowden, M. T. P. Rigby-Bell, S. de Morae Shubeita, C. Andrews, T. Lapauw, J. Vleugels, J. Quinta da Fonseca, K. Lambrinou, P. Frankel

Summary: This work proposes a novel approach to detect strain localisation caused by irradiation-induced damage in nuclear materials on the microstructural level. High-resolution digital image correlation (HRDIC) is used to determine local strains and generate high-resolution strain maps, which can help understand the effects of irradiation-induced dimensional change and cracking. The combination of scanning electron microscopy (SEM) and HRDIC is demonstrated to measure irradiation-induced dimensional changes in three different materials and is crucial in designing microstructures that are structurally resilient during irradiation.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Optics

Modeling of inhomogeneous heating behavior in ultrafast laser interaction with dielectric-dielectric nanocomposite with band gap contrast

Jide Han, Jozef Vleugels, Annabel Braem, Sylvie Castagne

Summary: Inspired by the applications of metal-dielectric nanocomposite materials, the study investigated the ultrashort single pulse laser irradiation of zirconia-alumina nanocomposite with band gap contrast. It was observed that the higher melting point zirconia phase melted while the lower melting point alumina phase remained intact, suggesting a significant temperature heterogeneity in the composite. Theoretical modeling revealed that the material band gap plays a significant role in laser energy absorption, resulting in a remarkable temperature difference between the two phases.

OPTICS AND LASERS IN ENGINEERING (2023)

Article Engineering, Manufacturing

Enhanced fatigue life of additively manufactured high-strength TiB2-reinforced Al-Cu-Mg-Ag composite through in-process surface modification during hybrid laser processing

Seren Senol, Antonio Cutolo, Amit Datye, Brecht Van Hooreweder, Kim Vanmeensel

Summary: This paper investigates the impact of applying a hybrid laser processing technique on the surface modification of aluminum-based composite materials in the laser powder bed fusion process. The significantly improved fatigue performance of the modified composite parts is attributed to the substantial reduction in surface roughness and stress concentration factor.

VIRTUAL AND PHYSICAL PROTOTYPING (2023)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)