4.7 Article

Work hardening behavior of ultrafine-grained Mn transformation-induced plasticity steel

期刊

ACTA MATERIALIA
卷 59, 期 20, 页码 7546-7553

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2011.08.030

关键词

Ultra-fine grain size; Localized deformation; Grain boundary thickening

资金

  1. WCU (World Class University) through National Research Foundation of Korea
  2. Ministry of Education, Science and Technology [R32-10147]

向作者/读者索取更多资源

Ultrafine grain refinement by intercritical annealing at 680 degrees C and 640 degrees C was investigated in a Fe-0.05%C-6.15%Mn-1.4%Si multiphase TRIP steel. A large volume fraction of retained austenite was obtained at room temperature in both cases. Whereas a pronounced localization of the deformation during tensile testing appeared in the steel annealed at 640 degrees C, strain localization occurred only in the initial deformation stages in the steel annealed at 680 degrees C. The retained austenite was transformed to strain-induced martensite during tensile testing in the sample annealed at 680 degrees C. However, no martensitic transformation was observed in the sample annealed at 640 degrees C. The activation volume showed a sharp decrease during the tensile test and saturated to the same value in both cases. Two different dislocation structures were observed in the ferrite grains of the samples annealed intercritically at 680 degrees C after tensile deformation, but only the dislocation-free structure of ferrite was observed in the sample annealed at 640 degrees C. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Effect of Heating Rate on Microstructure and Mechanical Properties in Al 7055

Seunggyu Choi, Junhyub Jeon, Namhyuk Seo, Seung Bae Son, Seok-Jae Lee

Summary: This study investigated the effects of heating rate during solid solution heat treatment on the mechanical properties and microstructure of 7055 aluminum alloy. Dilatometric tests were conducted to control the heating rates, and a variety of methods were used to evaluate mechanical properties and microstructural features. Characteristics of precipitates for each heating rate were calculated through thermodynamic simulation, and a model for predicting mechanical properties was proposed based on the results.

METALS AND MATERIALS INTERNATIONAL (2021)

Article Nanoscience & Nanotechnology

Recovering the ductility of medium-Mn steel by restoring the original microstructure

Mun Sik Jeong, Tak Min Park, Seunggyu Choi, Seok-Jae Lee, Jeongho Han

Summary: A novel resetting process is proposed in this study to recover the reduced ductility of cold-worked medium-Mn steels by restoring the original microstructure of the steel through simple heat treatment. The ductility of the reset steel is successfully recovered and its strength is improved, simplifying the manufacturing process of automotive components with conflicting attributes.

SCRIPTA MATERIALIA (2021)

Article Materials Science, Multidisciplinary

Combined data-driven model for the prediction of thermal properties of Ni-based amorphous alloys

Junhyub Jeon, Gwanghun Kim, Namhyuk Seo, Hyunjoo Choi, Hwi-Jun Kim, Min-Ha Lee, Hyun-Kyu Lim, Seung Bae Son, Seok-Jae Lee

Summary: Ni-based amorphous alloys have unique physical properties and are attracting attention in biomass plants. Machine learning algorithms are used to design and predict the thermal properties of these alloys, with a focus on determining the optimal composition.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2022)

Article Nanoscience & Nanotechnology

Design of low-Ni martensitic steels with novel cryogenic impact toughness exceeding 190 J

Hyun Wook Lee, Tak Min Park, Namhyuk Seo, Seok-Jae Lee, Changmin Lee, Jeongho Han

Summary: This study aimed to develop cost-effective steels for cryogenic applications by investigating the microstructural evolutions and impact absorbed energy of a newly designed Fe-2Mn-5Ni-0.1C steel treated with quenching-tempering (QT) and quenching-lamellarizing-tempering (QLT) processes. The QLT-processed steel exhibited a higher impact absorbed energy than the QT-processed steel and Fe-9Ni steel at -196 degrees C, thanks to the active transformation-induced plasticity from retained austenite and pronounced plastic deformation of the soft martensitic matrix due to double-step tempering.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Materials Science, Multidisciplinary

Application of explainable artificial intelligence for prediction and feature analysis of carbon diffusivity in austenite

Junhyub Jeon, Namhyuk Seo, Seung Bae Son, Jae-Gil Jung, Seok-Jae Lee

Summary: This study accurately predicts the carbon diffusivity in steels using machine learning methods and provides specific insights into the prediction mechanisms of features.

JOURNAL OF MATERIALS SCIENCE (2022)

Article Materials Science, Multidisciplinary

A Comparative Study of the Accuracy of Machine Learning Models for Predicting Tempered Martensite Hardness According to Model Complexity

Junhyub Jeon, DongEung Kim, Jun-Ho Hong, Hwi-Jun Kim, Seok-Jae Lee

Summary: We investigated various numerical methods to predict the hardness of tempered martensite in low alloy steels, including physical-based empirical equation, linear regression, shallow neural network, and deep learning approaches. We found that the physical-based empirical equation and the regression model based on the response surface method had similar prediction accuracy. The prediction accuracy of the machine learning models improved with increased complexity, but overfitting became a concern. Interestingly, a single layered neural network model with optimized hyperparameters showed similar or better hardness prediction performance compared to deep learning models with more complex architectures.

KOREAN JOURNAL OF METALS AND MATERIALS (2022)

Article Materials Science, Multidisciplinary

Machine Learning Prediction for Cementite Precipitation in Austenite of Low-Alloy Steels

Junhyub Jeon, Namhyuk Seo, Jae -Gil Jung, Seung Bae Son, Seok-Jae Lee

Summary: This paper presents a machine learning model for predicting the Acm temperature in the Fe-C phase diagram. The dataset is analyzed and adjusted, and the model is verified and analyzed using various techniques such as cross-validation and Shapley additive explanations.

MATERIALS TRANSACTIONS (2022)

Article Materials Science, Multidisciplinary

Optimization of Densification Behavior of a Soft Magnetic Powder by Discrete Element Method and Machine Learning

Jungjoon Kim, Dongchan Min, Suwon Park, Junhyub Jeon, Seok-Jae Lee, Youngkyun Kim, Hwi-Jun Kim, Youngjin Kim, Hyunjoo Choi

Summary: Densification of amorphous powder is crucial for energy-conversion parts. Mixing powders of different sizes enhances densification. Analytical model and computational simulation were used to predict powder packing behavior, and a machine learning model achieved high packing fraction.

MATERIALS TRANSACTIONS (2022)

Article Materials Science, Multidisciplinary

Prediction and mechanism explain of austenite- grain growth during reheating of alloy steel using XAI

Junhyub Jeon, Namhyuk Seo, Jae-Gil Jung, Hee-Soo Kim, Seung Bae Son, Seok-Jae Lee

Summary: In this study, a machine-learning model is used to predict austenite-grain growth, and explainable artificial intelligence (XAI) is applied to analyze the variable importance and mechanisms. With a large amount of collected data and the elimination of outliers using statistical methods, random forest regression (RFR) is selected as the model. The results show an improvement in the accuracy of the machine-learning model.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2022)

Article Nanoscience & Nanotechnology

Microstructure and mechanical behavior of AISI 4340 steel fabricated via spark plasma sintering and post-heat treatment

Jungbin Park, Junhyub Jeon, Namhyuk Seo, Singon Kang, Seung Bae Son, Seok-Jae Lee, Jae-Gil Jung

Summary: The evolution of microstructure and mechanical properties of AISI 4340 steel during high-energy ball milling, spark plasma sintering (SPS), and post heat treatments was investigated. The study found that high-energy ball milling resulted in the formation of a nanocrystalline (-10 nm) bcc Fe matrix with segregation of alloying elements and oxide particles. The as-sintered alloy consisted of martensite-austenite (MA) constituent and fine pearlite, while the quenching after austenitization formed a microstructure composed of martensite and MA constituent. Tempering induced the decomposition of retained austenite and precipitation of cementite particles. The compressive yield strength of the as-sintered alloy was primarily strengthened by dislocations and grain boundaries/cementite lamellae, as well as secondary strengthening by oxide particles.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Metallurgy & Metallurgical Engineering

MICROSTRUCTURE AND HARDNESS OF Cu-22Sn-xC ALLOYS FABRICATED BY POWDER METALLURGY

Gwanghun Kim, Jungbin Park, Seok-jae Lee, Hee-soo Kim

Summary: Cu-Sn alloys, known as bronze, have been widely used for various purposes since ancient times. This study focuses on the Cu-22Sn alloy with a higher tin content than traditional bronze, which is difficult to manufacture by conventional casting methods due to the carbon solubility of copper and tin. Cu-22Sn-xC alloy was successfully fabricated using mechanical alloying and spark plasma sintering, and its microstructural characteristics were analyzed. The hardness of sintered Cu-22Sn-xC alloy was compared with Cu-22Sn alloys manufactured by rolling, casting, and forging, and B0 sintered alloy showed the highest hardness.

ARCHIVES OF METALLURGY AND MATERIALS (2023)

Article Metallurgy & Metallurgical Engineering

AUSTENITIC STABILITY AND STRAIN-INDUCED MARTENSITIC TRANSFORMATION BEHAVIOR OF NANOCRYSTALLINE FeNiCrMoC HSLA STEELS

Jungbin Park, Jonghyun Jeon, Namhyuk Seo, Gwanghun Kim, Seung Bae Son, Jae-Gil Jung, Seok-Jae Lee

Summary: The stability of austenite and the strain-induced martensitic transformation behavior of a nanocrystalline FeNiCrMoC alloy were studied. The alloy was prepared by high-energy ball milling and spark plasma sintering. X-ray diffraction was used to measure the phase fraction and grain size. The grain sizes of the milled powder and sintered alloy were found to be in the nanometer range. The variation in austenite fraction during compressive deformation was measured, and the austenite stability and strain-induced martensitic transformation behavior were calculated. Hardness measurements were performed to assess the mechanical properties, and the hardness increased to 64.03 HRC when compressed up to 30%.

ARCHIVES OF METALLURGY AND MATERIALS (2023)

Article Metallurgy & Metallurgical Engineering

IMPROVEMENT OF WELDABILITY OF HOT-DIP GALVANIZED STEEL BY ANTI-GALVANIZING COATING WITH Si-Fe-Al OXIDE-BASED MICROPOWDER

Seong-Min So, Ki-Yeon Kim, Il -Song Park, Seok-Jae Lee, Dong-Jin Yoo, Yeon-Won Kim, Min -Suk Oh

Summary: A Si-Fe-Al ternary oxide-based micropowder coating was applied to prevent the formation of Zn coating on steel during hot-dip galvanizing process, reducing welding fume and defects in Zn-galvanized steel welding. The optimized oxide coating remained stable at 470 degrees C and effectively inhibited Zn coating formation. Residual Zn could be easily removed mechanically. This coating reduced Zn fume and prevented Zn from melting in weld bead during high-temperature welding, thereby reducing welding defects. The study showed that this pretreatment simplifies manufacturing process and saves time cost-effectively.

ARCHIVES OF METALLURGY AND MATERIALS (2023)

Article Metallurgy & Metallurgical Engineering

THE PREDICTION OF OPTIMIZED METALLOID CONTENT IN Fe-Si-B-P AMORPHOUS ALLOYS USING ARTIFICIAL INTELLIGENCE ALGORITHM

Min Woo Lee, Young Sin Choi, Do Hun Kwon, Eun Ji Cha, Hee Bok Kang, Jae In Jeong, Seok Jae Lee, Hwi Jun Kim

Summary: In this study, artificial intelligence and machine learning were used to optimize the amount of metalloid elements added to a Fe-based amorphous alloy to enhance its soft magnetic properties. The effects of metalloid elements on magnetic properties, such as saturation magnetization and coercivity, were investigated through correlation analysis. Regression analysis using the Random Forest Algorithm was performed, and the coefficient of determination was found to be 0.95. Furthermore, when considering the phase information of the Fe-Si-B-P ribbon, the coefficient of determination increased to 0.98. The optimal range of metalloid addition was predicted using correlation analysis and machine learning.

ARCHIVES OF METALLURGY AND MATERIALS (2022)

Article Metallurgy & Metallurgical Engineering

A STUDY ON THE OPTIMIZATION OF METALLOID CONTENTS OF Fe-Si-B-C BASED AMORPHOUS SOFT MAGNETIC MATERIALS USING ARTIFICIAL INTELLIGENCE METHOD

Young-sin Choi, Do-hun Kwon, Min-woo Lee, Eun-ji Cha, Junhyup Jeon, Seok-jae Lee, Jongryoul Kim, Hwi-jun Kim

Summary: The soft magnetic properties of Fe-based amorphous alloys can be controlled through alloy design, but there is a discrepancy between experimental data and predicted values. Machine learning processes can be used to optimize the composition for further improvement of the soft magnetic properties.

ARCHIVES OF METALLURGY AND MATERIALS (2022)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)