4.7 Article

Atomistic simulation of hillock growth

期刊

ACTA MATERIALIA
卷 58, 期 16, 页码 5471-5480

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2010.06.023

关键词

Hillock; Whisker; Compressive stress; Grain boundary diffusion; Molecular dynamics

资金

  1. US Department of Energy (Office of Basic Energy Sciences)
  2. National Institute of Standards and Technology

向作者/读者索取更多资源

This paper explores the mechanisms of hillock and whisker growth in stressed polycrystalline films by molecular dynamics simulations. The initial geometry consists of three grains with a triple line aligned perpendicular to a free surface, plus a fourth pyramidal-shaped grain implanted between the triple line and the surface. This simulated grain geometry corresponds to that observed in experiments during hillock and whisker growth, with the fourth grain serving as a seed for hillock growth. The simulations, performed under an applied in-plane biaxial compression, reveal an upward motion and growth of the seed grain. The growth occurs by stress-driven grain boundary diffusion from below the seed grain onto some of its internal faces. Accretion of atoms to those faces pushes the seed grain upwards and sideways. The different diffusion and accretion rates at different boundaries also give rise to internal stresses, which can be partially accommodated by grain boundary motion coupled to shear deformation. The hillock growth is countered by surface diffusion, which can slow the growth or even suppress it completely. Other mechanisms involved in hillock growth are also discussed. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据