4.7 Review

First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

期刊

ACTA MATERIALIA
卷 56, 期 13, 页码 3202-3221

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2008.03.006

关键词

ab initio electron theory; cluster expansion; phase stability; special quasirandom structure (SQS); thermodynamics

向作者/读者索取更多资源

The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom, structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Delta E-m) calculated by CE and dilute supercells agree very well. In the concentrated region, the Delta E-m values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Delta E-m for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Computational Assessment of the Efficacy of Oxidation-Resistant Iridium Coatings for Multiple Principal Component Rhenium Substitutes

Helena Liu, Mark Asta, Axel van de Walle

SCRIPTA MATERIALIA (2020)

Article Chemistry, Physical

Theoretical prediction of high melting temperature for a Mo-Ru-Ta-W HCP multiprincipal element alloy

Qi-Jun Hong, Jan Schroers, Douglas Hofmann, Stefano Curtarolo, Mark Asta, Axel van de Walle

Summary: In this study, based on density functional theory melting temperature calculations, we found that Mo0.292Ru0.555Ta0.031W0.122 exhibits a high melting temperature (around 2626 K), indicating its potential for high-temperature applications.

NPJ COMPUTATIONAL MATERIALS (2021)

Article Chemistry, Physical

Computational Assessment of Novel Predicted Compounds in Ni-Re Alloy System

Siya Zhu, Axel van de Walle

Summary: Ab initio high-throughput efforts have discovered new intermetallic compounds in various alloy systems that were previously thought to be well-characterized, but their stability at higher temperatures needs to be verified. Integrating Calphad modeling into the research can quickly test the stability of these compounds. For example, in the Ni-Re system, the D0(19) and D1(a) phases were confirmed to be stable at practical synthesis temperatures, despite being overlooked in prior assessments.

JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION (2021)

Article Chemistry, Physical

Temperature-Dependent Configurational Entropy Calculations for Refractory High-Entropy Alloys

Chiraag M. Nataraj, Axel van de Walle, Amit Samanta

Summary: The cluster expansion formalism is used to construct surrogate models for three refractory high-entropy alloys, and Monte Carlo methods and thermodynamic integration are then applied to calculate the configurational entropy of these alloys as a function of temperature. Results show that at low temperatures, the configurational entropy of these materials is largely independent of the number of elements in the alloy, suggesting that alloy design guidelines based on the ideal entropy of mixing may need further examination.

JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION (2021)

Article Materials Science, Multidisciplinary

First-principles study of the effect of Al and Hf impurities on Co3W antiphase boundary energies

Chiraag Nataraj, Ruoshi Sun, Christopher Woodward, Axel van de Walle

Summary: This study investigates the effects of Al and Hf impurities on the (111) antiphase boundary energy of metastable FCC Co3W through ab initio calculations. The results show that sacrificial W compositions stabilize the L1(2) structure over a wider range of compositions than constant ratio compositions. Hf increases the APB energy far more than Al, particularly at higher concentrations, and at higher concentrations of Hf, Hf and W tend to segregate into alternating planes.

ACTA MATERIALIA (2021)

Article Materials Science, Multidisciplinary

A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models

Chiraag Nataraj, Edgar Josue Landinez Borda, Axel van de Walle, Amit Samanta

Summary: The phase segregation behavior of three key refractory high entropy alloys was studied using first-principles calculations, and surrogate models were generated to explore the link between phase segregation and intermetallic phases at different temperatures. Each alloy exhibited unique characteristics and properties, with phase segregation and intermetallic phases observed at different temperature ranges.

ACTA MATERIALIA (2021)

Article Thermodynamics

Rapid screening of high-throughput ground state predictions

Sayan Samanta, Axel van de Walle

Summary: High-throughput computational thermodynamic approaches are being increasingly used to discover new compounds. By using the Calphad formalism and simple first-principles input, we can overcome the limitations of traditional methods and provide more accurate phase diagram predictions.

CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY (2021)

Article Materials Science, Multidisciplinary

A simple method for computing the formation free energies of metal oxides

Hantong Chen, Qijun Hong, Sergey Ushakov, Alexandra Navrotsky, Axel van de Walle

Summary: This paper presents a simple procedure for obtaining the formation free energy of metal oxides in their solid states by introducing the concept of virtual solid oxygen free energy. The proposed reference free energy can be easily obtained from both computations and experiments, enabling the direct integration of DFT and experimental data. The procedure is independent of specific total energy method used, and is applicable to formation free energy calculations of any metal oxides.

COMPUTATIONAL MATERIALS SCIENCE (2021)

Article Materials Science, Multidisciplinary

Interactive Exploration of High-Dimensional Phase Diagrams

Axel van de Walle, Hantong Chen, Helena Liu, Chiraag Nataraj, Sayan Samanta, Siya Zhu, Raymundo Arroyave

Summary: High-dimensional thermodynamic phase stability databases are increasingly common, addressing the need for intuitive understanding of phase relationships in materials design through algorithms that enable interactive exploration in high-dimensional spaces.
Article Multidisciplinary Sciences

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H. House, Yuxin Huang, Dasuni Jayawardena, Abdul H. Kanji, Ayush Khandelwal, Khoa Le, Anja Muhlemann, Jarad Niemi, Apurv Shah, Ariane Stark, Yijin Wang, Nutcha Wattanachit, Martha W. Zorn, Youyang Gu, Sansiddh Jain, Nayana Bannur, Ayush Deva, Mihir Kulkarni, Srujana Merugu, Alpan Raval, Siddhant Shingi, Avtansh Tiwari, Jerome White, Neil F. Abernethy, Spencer Woody, Maytal Dahan, Spencer Fox, Kelly Gaither, Michael Lachmann, Lauren Ancel Meyers, James G. Scott, Mauricio Tec, Ajitesh Srivastava, Glover E. George, Jeffrey C. Cegan, Ian D. Dettwiller, William P. England, Matthew W. Farthing, Robert H. Hunter, Brandon Lafferty, Igor Linkov, Michael L. Mayo, Matthew D. Parno, Michael A. Rowland, Benjamin D. Trump, Yanli Zhang-James, Samuel Chen, Stephen Faraone, Jonathan Hess, Christopher P. Morley, Asif Salekin, Dongliang Wang, Sabrina M. Corsetti, Thomas M. Baer, Marisa C. Eisenberg, Karl Falb, Yitao Huang, Emily T. Martin, Ella McCauley, Robert L. Myers, Tom Schwarz, Daniel Sheldon, Graham Casey Gibson, Rose Yu, Liyao Gao, Yian Ma, Dongxia Wu, Xifeng Yan, Xiaoyong Jin, Yu-Xiang Wang, YangQuan Chen, Lihong Guo, Yanting Zhao, Quanquan Gu, Jinghui Chen, Lingxiao Wang, Pan Xu, Weitong Zhang, Difan Zou, Hannah Biegel, Joceline Lega, Steve McConnell, V. P. Nagraj, Stephanie L. Guertin, Christopher Hulme-Lowe, Stephen D. Turner, Yunfeng Shi, Xuegang Ban, Robert Walraven, Qi-Jun Hong, Stanley Kong, Axel van de Walle, James A. Turtle, Michal Ben-Nun, Steven Riley, Pete Riley, Ugur Koyluoglu, David DesRoches, Pedro Forli, Bruce Hamory, Christina Kyriakides, Helen Leis, John Milliken, Michael Moloney, James Morgan, Ninad Nirgudkar, Gokce Ozcan, Noah Piwonka, Matt Ravi, Chris Schrader, Elizabeth Shakhnovich, Daniel Siegel, Ryan Spatz, Chris Stiefeling, Barrie Wilkinson, Alexander Wong, Sean Cavany, Guido Espana, Sean Moore, Rachel Oidtman, Alex Perkins, David Kraus, Andrea Kraus, Zhifeng Gao, Jiang Bian, Wei Cao, Juan Lavista Ferres, Chaozhuo Li, Tie-Yan Liu, Xing Xie, Shun Zhang, Shun Zheng, Alessandro Vespignani, Matteo Chinazzi, Jessica T. Davis, Kunpeng Mu, Ana Pastore Y. Piontti, Xinyue Xiong, Andrew Zheng, Jackie Baek, Vivek Farias, Andreea Georgescu, Retsef Levi, Deeksha Sinha, Joshua Wilde, Georgia Perakis, Mohammed Amine Bennouna, David Nze-Ndong, Divya Singhvi, Ioannis Spantidakis, Leann Thayaparan, Asterios Tsiourvas, Arnab Sarker, Ali Jadbabaie, Devavrat Shah, Nicolas Della Penna, Leo A. Celi, Saketh Sundar, Russ Wolfinger, Dave Osthus, Lauren Castro, Geoffrey Fairchild, Isaac Michaud, Dean Karlen, Matt Kinsey, Luke C. Mullany, Kaitlin Rainwater-Lovett, Lauren Shin, Katharine Tallaksen, Shelby Wilson, Elizabeth C. Lee, Juan Dent, Kyra H. Grantz, Alison L. Hill, Joshua Kaminsky, Kathryn Kaminsky, Lindsay T. Keegan, Stephen A. Lauer, Joseph C. Lemaitre, Justin Lessler, Hannah R. Meredith, Javier Perez-Saez, Sam Shah, Claire P. Smith, Shaun A. Truelove, Josh Wills, Maximilian Marshall, Lauren Gardner, Kristen Nixon, John C. Burant, Lily Wang, Lei Gao, Zhiling Gu, Myungjin Kim, Xinyi Li, Guannan Wang, Yueying Wang, Shan Yu, Robert C. Reiner, Ryan Barber, Emmanuela Gakidou, Simon Hay, Steve Lim, Chris Murray, David Pigott, Heidi L. Gurung, Prasith Baccam, Steven A. Stage, Bradley T. Suchoski, B. Aditya Prakash, Bijaya Adhikari, Jiaming Cui, Alexander Rodriguez, Anika Tabassum, Jiajia Xie, Pinar Keskinocak, John Asplund, Arden Baxter, Buse Eylul Oruc, Nicoleta Serban, Sercan O. Arik, Mike Dusenberry, Arkady Epshteyn, Elli Kanal, Long T. Le, Chun-Liang Li, Tomas Pfister, Dario Sava, Rajarishi Sinha, Thomas Tsai, Nate Yoder, Jinsung Yoon, Leyou Zhang, Sam Abbott, Nikos Bosse, Sebastian Funk, Joel Hellewell, Sophie R. Meakin, Katharine Sherratt, Mingyuan Zhou, Rahi Kalantari, Teresa K. Yamana, Sen Pei, Jeffrey Shaman, Michael L. Li, Dimitris Bertsimas, Omar Skali Lami, Saksham Soni, Hamza Tazi Bouardi, Turgay Ayer, Madeline Adee, Jagpreet Chhatwal, Ozden O. Dalgic, Mary A. Ladd, Benjamin P. Linas, Peter Mueller, Jade Xiao, Yuanjia Wang, Qinxia Wang, Shanghong Xie, Donglin Zeng, Alden Green, Jacob Bien, Logan Brooks, Addison J. Hu, Maria Jahja, Daniel McDonald, Balasubramanian Narasimhan, Collin Politsch, Samyak Rajanala, Aaron Rumack, Noah Simon, Ryan J. Tibshirani, Rob Tibshirani, Valerie Ventura, Larry Wasserman, Eamon B. O'Dea, John M. Drake, Robert Pagano, Quoc T. Tran, Lam Si Tung Ho, Huong Huynh, Jo W. Walker, Rachel B. Slayton, Michael A. Johansson, Matthew Biggerstaff, Nicholas G. Reich

Summary: Short-term probabilistic forecasts of the COVID-19 pandemic in the United States have been crucial in communication between scientists and the public and decision-makers. The US COVID-19 Forecast Hub collected millions of predictions from various academic, industry, and independent research groups, providing accurate forecasts for short-term decision-making. Collaboration between government agencies, academic modeling teams, and industry partners plays a significant role in developing modeling capabilities to support outbreak response at different levels.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2022)

Article Multidisciplinary Sciences

Melting temperature prediction using a graph neural network model: From ancient minerals to new materials

Qi-Jun Hong, Sergey V. Ushakov, Axel van de Walle, Alexandra Navrotsky

Summary: In this study, a machine learning model was developed to predict the melting temperature of compounds quickly, overcoming the time-consuming nature of traditional measurements or computations. The model has demonstrated its usefulness in various fields, such as materials design and discovery, as well as planetary science and geology.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2022)

Article Multidisciplinary Sciences

Rapid Geometric Screening of Low-Energy Surfaces in Crystals

Helena Liu, Axel van de Walle

Summary: This study proposes a screening method to calculate the surface energy of crystals by simplifying the physical model. The method shows high accuracy in calculating the surface energy of crystal structures, and serves as a valuable tool for determining crystal shapes from first principles.

SYMMETRY-BASEL (2022)

Article Materials Science, Multidisciplinary

aflow plus plus : A C plus plus framework for autonomous materials design

Corey Oses, Marco Esters, David Hicks, Simon Divilov, Hagen Eckert, Rico Friedrich, Michael J. Mehl, Andriy Smolyanyuk, Xiomara Campilongo, Axel van de Walle, Jan Schroers, A. Gilad Kusne, Ichiro Takeuchi, Eva Zurek, Marco Buongiorno Nardelli, Marco Fornari, Yoav Lederer, Ohad Levy, Cormac Toher, Stefano Curtarolo

Summary: The realization of novel technological opportunities in computational and autonomous materials design requires efficient frameworks. aflow++ has provided interconnected algorithms and workflows to address this challenge for more than two decades. This article presents an overview of the software and its functionalities, highlighting key focus areas such as structural, electronic, thermodynamic, and thermomechanical properties, as well as complex material modeling. The software prioritizes interoperability, consistency of results, and validation schemes for high-throughput data generation, contributing to the development of reliable materials databases.

COMPUTATIONAL MATERIALS SCIENCE (2023)

Review Chemistry, Physical

Thorium and Rare Earth Monoxides and Related Phases

Sergey V. Ushakov, Qi-Jun Hong, Dustin A. Gilbert, Alexandra Navrotsky, Axel van de Walle

Summary: This paper discusses the solid-state chemistry of thorium and rare earths, focusing on the monoxides and related rocksalt phases. Experimental and computational studies have shown the potential applications of lanthanide monoxides in spintronics and the stability of thorium monoxide under high pressure. New computational results further confirm the stability of thorium monoxide at high pressure and suggest the possibility of synthesizing (Th,Nd)O under specific conditions.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

Enhancing ductility in bulk metallic glasses by straining during cooling

Rodrigo Miguel Ojeda Mota, Ethen Thomas Lund, Sungwoo Sohn, David John Browne, Douglas Clayton Hofmann, Stefano Curtarolo, Axel van de Walle, Jan Schroers

Summary: The research reveals that straining a bulk metallic glass during cooling from the supercooled region can enhance its bending ductility, as the structure is pulled up the potential energy landscape. This method of cooling the excited liquid can improve the ductility of bulk metallic glasses.

COMMUNICATIONS MATERIALS (2021)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)