4.4 Article

The structure of Rv3717 reveals a novel amidase from Mycobacterium tuberculosis

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444913026371

关键词

-

资金

  1. Council of Scientific and Industrial Research [FAC-02, BSC0121]
  2. CSIR
  3. ICMR
  4. Department of Biotechnology (India)
  5. Department of Science and Technology (India)

向作者/读者索取更多资源

Bacterial N-acetylmuramoyl-l-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and l-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 angstrom resolution by the Pt-SAD phasing method. Rv3717 possesses an alpha/beta-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-l-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据