4.8 Article

Magnesium alloys as a biomaterial for degradable craniofacial screws

期刊

ACTA BIOMATERIALIA
卷 10, 期 5, 页码 2323-2332

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.12.040

关键词

Biodegradable metal; Magnesium; Craniofacial implants; Finite-element modeling

资金

  1. National Science Foundation [0812348]
  2. National Institutes of Health [T32 EB003392-01]
  3. University of Pittsburgh School of Dental Medicine
  4. Complex Engineered Multifunctional Materials (CCEMM) at University of Pittsburgh

向作者/读者索取更多资源

Recently, magnesium (Mg) alloys have received significant attention as potential biomaterials for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available pure Mg and alloy AZ31 in vivo in a rabbit mandible. First, Mg and AZ31 screws were compared to stainless steel screws in an in vitro pull-out test and determined to have a similar holding strength (similar to 40 N). A finite-element model of the screw was created using the pull-out test data, and this model can be used for future Mg alloy screw design. Then, Mg and AZ31 screws were implanted for 4, 8 and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. Microcomputed tomography was used to assess bone remodeling and Mg/AZ31 degradation, both visually and qualitatively through volume fraction measurements for all time points. Histological analysis was also completed for the Mg and AZ31 at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg and AZ31 screws. Pure Mg had a different degradation profile than AZ31; however, bone growth occurred around both screw types. The degradation rate of both Mg and AZ31 screws in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg alloys for craniofacial applications. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据