4.8 Article

Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications

期刊

ACTA BIOMATERIALIA
卷 8, 期 5, 页码 1990-1997

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.02.004

关键词

Biomaterials; Changeable Young's modulus; Deformation-induced omega phase; Mechanical twinning; Springback

资金

  1. New Energy and Industrial Technology Development Organization (NEDO) of Japan
  2. Research Foundation for Materials Research
  3. Light Metal Educational Foundation, Osaka, Japan
  4. Global COE, Tohoku University, Sendai, Japan
  5. Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
  6. Institute for Materials Research, Tohoku University, Sendai, Japan

向作者/读者索取更多资源

To develop a novel biomedical titanium alloy with a changeable Young's modulus via deformation-induced omega phase transformation for the spinal rods in spinal fixation devices, a series of metastable beta type binary Ti-(15-18)Mo alloys were prepared. In this study, the microstructures, Young's moduli and tensile properties of the alloys were systemically examined to investigate the effects of deformation-induced omega phase transformation on their mechanical properties. The springback of the optimal alloy was also examined. Ti-(15-18)Mo alloys subjected to solution treatment comprise a beta phase and a small amount of athermal omega phase, and they have low Young's moduli. All the alloys investigated in this study show an increase in the Young's modulus owing to deformation-induced omega phase transformation during cold rolling. The deformation-induced omega phase transformation is accompanied with {332}(beta) mechanical twinning. This resulted in the maintenance of acceptable ductility with relatively high strength. Among the examined alloys, the Ti-17Mo alloy shows the lowest Young's modulus and the largest increase in the Young's modulus. This alloy exhibits small springback and could be easily bent to the required shape during operation. Thus, Ti-17Mo alloy is considered to be a potential candidate for the spinal rods in spinal fixation devices. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据