4.8 Article

The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects

期刊

ACTA BIOMATERIALIA
卷 8, 期 3, 页码 1190-1200

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.12.002

关键词

Octacalcium phosphate; Gelatin; Crystal growth; Bone regeneration; Biodegradation

资金

  1. Ministry of Education, Science, Sports, and Culture of Japan [17076001, 19390490, 23390450, 23659909, 23106010]
  2. Suzuken Memorial Foundation
  3. Grants-in-Aid for Scientific Research [23390450, 23659909] Funding Source: KAKEN

向作者/读者索取更多资源

This study was designed to investigate the extent to which an octacalcium phosphate/gelatin (OCP/Gel) composite can repair rat calvarial critical-sized defects (CSD). OCP crystals were grown with various concentrations of gelatin molecules and the OCP/Gel composites were characterized by chemical analysis. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and mercury intrusion porosimetry. The OCP/Gel composite disks received vacuum dehydrothermal treatment, were implanted in Wistar rat calvarial CSD for 4, 8 and 16 weeks, and then subjected to radiologic, histologic, histomorphometric and histochemical assessment. The attachment of mouse bone marrow stromal ST-2 cells on the disks of the OCP/Gel composites was also examined after 1 day of incubation. OCP/Gel composites containing 24 wt.%, 31 wt.% and 40 wt.% of OCP and with approximate pore sizes of 10-500 mu m were obtained. Plate-like crystals were observed closely associated with the Gel matrices. TEM. XRD, FTIR and SAED confirmed that the plate-like crystals were identical to those of the OCP phase, but contained a small amount of sphere-like amorphous material adjacent to the OCP crystals. The OCP (40 wt.%)/Gel composite repaired 71% of the CSD in conjunction with material degradation by osteoclastic cells, which reduced the percentage of the remaining implant to less than 3% within 16 weeks. Of the seeded ST-2 cells, 60-70% were able to migrate and attach to the OCP/Gel composites after 1 day of incubation, regardless of the OCP content. These results indicate that an OCP/Gel composite can repair rat calvarial CSD very efficiently and has favorable biodegradation characteristics. Therefore, it is hypothesized that host osteoblastic cells can easily migrate into an OCP/Gel composite. (c) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据