4.8 Article

Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications

期刊

ACTA BIOMATERIALIA
卷 4, 期 3, 页码 656-663

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2007.10.010

关键词

strontium carbonate apatite; porous scaffold; solubility test; mechanical properties; biomedical applications

向作者/读者索取更多资源

Sr and CO3 co-substituted hydroxyapatite (SrCHA) nanopowder was synthesized by neutralization. The powder was characterized. The improved solubility in Hanks' balanced solution of SrCHA granules (400-600 mu m of dimensional range), potentially usable as bone filler, was assessed and compared with that of an analogous carbonate free granulate. SrCHA porous bodies with interconnected micro- and macro-porosity, which mimic the morphology of spongy bone, were prepared by the impregnation of cellulose sponges with suspensions of the SrCHA powder and controlled sintering. SrCHA porous scaffolds sintered at 850 degrees C, in flowing CO2 atmosphere, showed satisfying compressive strength (4.58 +/- 0.75 MPa) for a porosity value of 45 vol.% and retained the desired ionic substitutions (Sr/Ca = 0.11 and CO3 = 6.8 wt.%). The possibility of widely modulating, by acting on the chemical-physical-geometrical features of the material, the prolonged in situ release of therapeutic Sr, together with the fundamental (Ca, PO4) and main substituting (CO3) ions that constitute the bone mineral phase, makes the use of SrCHA as resorbable bone filler or bone substitute scaffolds promising, especially when pathologies related with Sr deficiency are present. In vitro and in vivo tests are in progress. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据