4.8 Article

Physically Transient Photonics: Random versus Distributed Feedback Lasing Based on Nanoimprinted DNA

期刊

ACS NANO
卷 8, 期 10, 页码 10893-10898

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn504720b

关键词

patterning; nanoimprint lithography; DNA; transient nanophotonics

资金

  1. European Research Council under European Union/ERC [306357]

向作者/读者索取更多资源

Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据