4.8 Article

Mapping Nanoscale Variations in Photochemical Damage of Polymer/Fullerene Solar Cells with Dissipation Imaging

期刊

ACS NANO
卷 7, 期 11, 页码 10405-10413

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn404920t

关键词

atomic force microscopy; organic solar cells; photovoltaics; dissipation imaging; photo-oxidation; photodegradation; PTB7

资金

  1. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1306079] Funding Source: National Science Foundation

向作者/读者索取更多资源

We use frequency-modulated electrostatic force microscopy to track changes in cantilever quality factor (Q) as a function of photochemical damage in a model organic photovoltaic system poly-[[4,8-bis[(2-ethylhexl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diy1]- [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno(3,4-b]thiophenediyl]] (PTB7) and 3'H-cyclopropa[8,25][5,6]fullerene-C71-D5h(6)-3'-butanoic acid, 3'-phenyl-, methyl ester (Pc71BM). We correlate local Q factor imaging with macroscopic device performance and show that, for this system, changes in cantilever Q correlate well with changes in external quantum efficiency and can thus be used to monitor local photochemical damage over the entire functional lifetime of a PTB7:PC71BM solar cell. We explore how Q imaging is affected by the choice of cantilever resonance frequency. Finally, we use Q imaging to elucidate the differences in the evolution of nanoscale structure in the photochemical damage occurring in PTB7:PC71BM solar cells processed with and without the solvent additive 1,8-diiodooctane (DIO). We show that processing with DIO not only yields a preferable morphology for uniform performance across the surface of the device but also enhances the stability of PTB7:PC71BM solar cells-an effect that can be predicted based on the local Q images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据