4.8 Article

A Device for Performing Lateral Conductance Measurements on Individual Double-Stranded DNA Molecules

期刊

ACS NANO
卷 6, 期 10, 页码 9087-9094

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn303322r

关键词

DNA translocation; nanofluidics; nanochannels

资金

  1. National Human Genome Research Institute, National Institutes of Health [R01HG02647-05]

向作者/读者索取更多资源

A nanofluidic device is described that is capable of electrically monitoring the driven translocation of DNA molecules through a nanochannel. This is achieved by intersecting a long transport channel with a shorter orthogonal nanochannel. The ionic conductance of this transverse nanochannel is monitored while DNA is electrokinetically driven through the transport channel. When DNA passes the intersection, the transverse conductance is altered, resulting in a transient current response. In 1 M KCl solutions, this was found to be a current enhancement of 5-25%, relative to the baseline transverse ionic current. Two different device geometries were investigated. In one device, the DNA was detected after it was fully inserted into and translocating through the transport nanochannel. In the other device, the DNA was detected while it was in the process of entering the nanochannel. It was found that these two conditions are characterized by different transport dynamics. Simultaneous optical and electrical monitoring of DNA translocation confirmed that the transient events originated from DNA transport through the nanochannel Intersection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据