4.8 Article

Facile Assembly of Micro- and Nanoarrays for Sensing with Natural Cell Membranes

期刊

ACS NANO
卷 5, 期 9, 页码 7555-7564

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn202554t

关键词

microarray; nanoimprint lithography; atomic layer deposition; vesicle array; lipid rafts; myelin; surface plasmon resonance

资金

  1. National Institutes of Health [R01 GM092993, NS024180, NS032129, NS048357, R21 NS073684]
  2. National Science Foundation (NSF) [DBI 0964216]
  3. Office of Naval Research (ONR)
  4. Minnesota Partnership Award for Biotechnology and Medical Genomics
  5. National Multiple Sclerosis Society [CA1060A11]
  6. Applebaurn Foundation
  7. Hilton Foundation
  8. NSF through the National Nanotechnology Infrastructure Network

向作者/读者索取更多资源

Microarray technology has facilitated many powerful high-throughput studies In the fields of genetics and proteomics, among others. However, Preparation of microarrays composed of cell-derived membranes with embedded receptors has proven difficult. Here we describe a new method for forming microarrays composed of synthetic lipid vesicles and natural cell membranes. The method Is based upon assembly of vesicles and natural membranes into recessed micro- and, nanowells and using a polydimethylsiloxane (PDMS) block as a squeegee. This method is used to assemble phospholipid vesicles into arrays with micrometer and nanoscale dimensions. Native myelin and neuronal lipid raft arrays are also formed in 30 min or less. We show the natural membrane arrays can be used for sensing lipid-protein interactions by detecting cholera toxin binding to ganglioside GM1 in neuronal lipid rafts. In multicomponent arrays myelin can be distinguished from neuronal rafts by antibody binding to cell-specific surface antigens. Finally, myelin arrays formed in gold nanowells are used for surface plasmon resonance sensing. This assembly approach is simple, broadly applicable, and opens up new avenues of research not easily accomplished with standard microarray technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据