4.6 Article

Coupling Hippocampal Neurogenesis to Brain pH through Proneurogenic Small Molecules That Regulate Proton Sensing G Protein-Coupled Receptors

期刊

ACS CHEMICAL NEUROSCIENCE
卷 3, 期 7, 页码 557-568

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cn300025a

关键词

Small molecules; acidosis; G protein-coupled receptors; hippocampal neurogenesis; traumatic brain injury

资金

  1. American Heart Association-Jon Holden DeHaan Cardiac Myogenesis Research Network
  2. NIH/NHLBI U01 Progenitor Cell Biology Consortium [HL100401]
  3. LoneStar Heart, Inc. Sponsored Research Agreement

向作者/读者索取更多资源

Acidosis, a critical aspect of central nervous system (CNS) pathophysiology and a metabolic corollary of the hypoxic stem cell niche, could be an expedient trigger for hippocampal neurogenesis and brain repair. We recently tracked the function of our isoxazole stem cell-modulator small molecules (Isx) through a chemical biology-target discovery strategy to GPR68, a proton (pH) sensing G protein-coupled receptor with no known function in brain. Isx and GPR68 coregulated neuronal target genes such as Bex1 (brain-enriched X-linked protein-1) in hippocampal neural progenitors (HCN cells), which further amplified GPR68 signaling by producing metabolic acid in response to Isx. To evaluate this proneurogenic small molecule/proton signaling circuit in vivo, we explored GPR68 and BEX1 expression in brain and probed brain function with Isx. We localized proton-sensing GPR68 to radial processes of hippocampal type 1 neural stem cells (NSCs) and, conversely, localized BEX1 to neurons. At the transcriptome level, Isx demonstrated unrivaled proneurogenic activity in primary hippocampal NSC cultures. In vivo, Isx pharmacologically targeted type 1 NSCs, promoting neurogenesis in young mice, depleting the progenitor pool without adversely affecting hippocampal learning and memory function. After traumatic brain injury, cerebral cortical astrocytes abundantly expressed GPR68, suggesting an additional role for proton-GPCR signaling in reactive astrogliosis. Thus, probing a novel proneurogenic synthetic small molecule's mechanism-of-action, candidate target, and pharmacological activity, we identified a new GPR68 regulatory pathway for integrating neural stem and astroglial cell functions with brain pH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据