4.8 Article

Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration Induced Quenching

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 40, 页码 34184-34192

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b10618

关键词

greener luminescent solar concentrators; cross-linked carbon nanodots; high loading concentration; concentration-induced quenching

资金

  1. Ministry of Science and Technology Taiwan [MOST 104-2112-M-033-003-MY3, 107-2112-M-033-007, 107-2112-M-033-004-M13]

向作者/读者索取更多资源

A luminescent solar concentrator (LSC) is composed of loaded luminophores and a waveguide that can be employed to harvest and concentrate both direct and diffused sunlight for promising applications in solar windows. Thus far, most of efficient LSCs still relied on the heavy-metal-containing colloidal quantum dots (CQDs) dispersed into a polymer matrix with a very low loading (typically <1 wt %). Such low-loading constraint is required to mitigate the concentration induced quenching (CIQ) and maintain high optical quality and film uniformity, but this would strongly reduce the light absorbing efficiency. To address all issues, greener LSCs with high loading concentration were prepared by in situ cross-linking organosilane-functionalized carbon nanodots (Si-CNDs), and their photophysical properties relevant to LSC operation were studied. The PL emission is stable and does not suffer from the severe CIQ effect for cross-linked Si-CNDs even with 25 wt % loadings, thus exhibiting high solid-state quantum yields (QYs) up to 45 +/- 5% after the calibration of the reabsorption losses. Furthermore, such LSCs can still hold high optical quality and film uniformity, leading to low scattering losses and high internal quantum efficiency of similar to 22%. However, the reabsorption losses need to be further addressed to realize large-area LSCs based on earth-abundant, cost-effective CNDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据