4.8 Article

Multidimensional Conductive Nanofilm-Based Flexible Aptasensor for Ultrasensitive and Selective HBsAg Detection

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 34, 页码 28412-28419

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b09918

关键词

aptasensor; electropolymerization; hepatitis B surface antigen; polypyrrole; graphene

资金

  1. Device Business, Samsung Electronics, Korea

向作者/读者索取更多资源

Hepatitis B virus (HBV) infection is a major worldwide health issue causing serious liver diseases, including liver cirrhosis and hepatocellular carcinoma. Monitoring the serum hepatitis B surface antigen (HBsAg) level is pivotal to the diagnosis of HBV infection. In this study, we describe multidimensional conductive nanofilm (MCNF)-based field-effect transistor (FET) aptasensor for HBsAg detection. The MCNF, composed of vertically oriented carboxylic polypyrrole nanowires (CPPyNW) and graphene layer, is formed using electropolymerization of pyrrole on the graphene surface and following acid treatment. The amine-functionalized HBsAg-binding aptamers are then immobilized on the CPPyNW surface through covalent bonding formation (i.e., amide group). The prepared aptasensor presents highly sensitive to HBsAg as low as 10 aM among interfering biomolecules with various deformations. Moreover, the MCNF-based aptasensor has great potential for practical application in the noninvasive real-time diagnosis because of its improved sensing ability to the human serum and artificial saliva.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据