4.8 Article

TEMPO/Viologen Electrochemical Heterojunction for Diffusion-Controlled Redox Mediation: A Highly Rectifying Bilayer-Sandwiched Device Based on Cross-Reaction at the Interface between Dissimilar Redox Polymers

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 6, 页码 4043-4049

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am405527y

关键词

charge transport; rectification; redox polymer; heterojunction; self-exchange reaction; bilayer

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [24108739, 24225003, 24750113, 25107733, 25288056]
  2. Grants-in-Aid for Scientific Research [25288056, 24750113, 25107733, 24108739, 26620108] Funding Source: KAKEN

向作者/读者索取更多资源

A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V2+), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of poly-norbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO+/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO+ and V+ at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V2+/V+ and V+/V-0 exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据