4.8 Article

Grafted Glycopolymer-Based Receptor Mimics on Polymer Support for Selective Adhesion of Bacteria

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 2, 期 12, 页码 3555-3562

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am1007276

关键词

glycopolymer; polypropylene microfiltration membrane; surface modification; bacteria adhesion

资金

  1. Alexander-von-Humboldt Stiftung

向作者/读者索取更多资源

A sugar-containing monomer (2-lactobionamidoethyl methacrylate, LAMA) was grafted on a polypropylene (PP) microfiltration membrane surface by UV-induced graft copolymerization. The degree of grafting can be controlled by variation of monomer concentration, UV irradiation time, and photoinitiator concentration. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to confirm the surface modification on the membranes. The water contact angle was used to evaluate the hydrophilicity change of the membrane surface before and after modification. Bacteria capture experiments showed that the membrane could selectively bind E. faecalis while adhesion of S. maltophilia was not influenced by the functionalization of PP with grafted poly(LAMA). The adhesion of E. faecalis onto poly(LAMA) grafted membrane could be inhibited by 200 mM galactose solution; however, glucose solution showed no inhibition effect. Moreover, occupying sugar residues on the membrane surface primarily by a galactose targeting lectin, peanut agglutinin, could significantly suppress the following adhesion of E. faecalis. All these results clearly demonstrate that this poly(LAMA) grafted PP membrane can selectively capture E. faecalis and that this selection is based on the interaction between galactose side groups on grafted flexible functional polymer chains on the membrane surface and galactose binding protein on the E. faecalis cell membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据