4.7 Article Proceedings Paper

PiCam: An Ultra-Thin High Performance Monolithic Camera Array

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 32, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2508363.2508390

关键词

plenoptic acquisition; computational camera; light field; array camera; parallax detection; superresolution; depth map

向作者/读者索取更多资源

We present PiCam (Pelican Imaging Camera-Array), an ultra-thin high performance monolithic camera array, that captures light fields and synthesizes high resolution images along with a range image (scene depth) through integrated parallax detection and superresolution. The camera is passive, supporting both stills and video, low light capable, and small enough to be included in the next generation of mobile devices including smartphones. Prior works [Rander et al. 1997; Yang et al. 2002; Zhang and Chen 2004; Tanida et al. 2001; Tanida et al. 2003; Duparre et al. 2004] in camera arrays have explored multiple facets of light field capture - from view-point synthesis, synthetic refocus, computing range images, high speed video, and micro-optical aspects of system miniaturization. However, none of these have addressed the modifications needed to achieve the strict form factor and image quality required to make array cameras practical for mobile devices. In our approach, we customize many aspects of the camera array including lenses, pixels, sensors, and software algorithms to achieve imaging performance and form factor comparable to existing mobile phone cameras. Our contributions to the post-processing of images from camera arrays include a cost function for parallax detection that integrates across multiple color channels, and a regularized image restoration (superresolution) process that takes into account all the system degradations and adapts to a range of practical imaging conditions. The registration uncertainty from the parallax detection process is integrated into a Maximum-a-Posteriori formulation that synthesizes an estimate of the high resolution image and scene depth. We conclude with some examples of our array capabilities such as post-capture (still) refocus, video refocus, view synthesis to demonstrate motion parallax, 3D range images, and briefly address future work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据