4.8 Review

Nano-oddities: Unusual Nucleic Acid Assemblies for DNA-Based Nanostructures and Nanodevices

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 47, 期 6, 页码 1836-1844

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar500063x

关键词

-

资金

  1. Aquitaine Regional Council
  2. ANR

向作者/读者索取更多资源

CONSPECTUS: DNA is an attractive polymer building material for nanodevices and nanostructures due to its ability for self-recognition and self-assembly. Assembly relies on the formation of base-specific interactions that allow strands to adopt structures in a controllable fashion. Most DNA-based higher order structures such as DNA cages, 2D and 3D DNA crystals, or origamis are based on DNA double helices stabilized by Watson Crick complementarity. A number of nonclassical pairing patterns are possible between or among DNA strands; these interactions result in formation of unusual structures that include, but are not limited to, G-quadruplexes, i-motifs, triplexes, and parallel-stranded duplexes. These structures create greater diversity of DNA-based building blocks for nanomaterials and have certain advantages over conventional duplex DNA, such as enhanced thermal stability and sensitivity to chemical stimuli. In this Account, we briefly introduce these alternative DNA structures and describe in detail their utilization in a variety of nanomaterials and nanomachines. The field of DNA nano-oddities emerged in the late 1990s when for the first time a DNA nanomachine was designed based on equilibrium between B-DNA and noncanonical, left-handed Z-DNA. Soon after, proof-of-principle DNA nanomachines based on several DNA oddities were reported. These machines were set in motion by the addition of complementary strands (a principle used by many B-DNA-based nanodevices), by the addition of selected cations, small molecules, or proteins, or by a change in pH or temperature. Today, we have fair understanding of the mechanism of action of these devices, excellent control over their performance, and knowledge of basic principles of their design. pH sensors and pH-controlled devices occupy a central niche in the field. They are usually based on i-motifs or triplex DNA, are amazingly simple, robust, and reversible, and create no waste apart from salt and water. G-quadruplex based nanostructures have unusually high stability, resist DNase and temperature, and display high selectivity toward certain cations. The true power of using these nano-oddities comes from combining them with existing nanomaterials (e.g., DNA origami, gold nanoparticles, graphene oxide, or mesoporous silica) and integrating them into existing mechanical and optoelectronic devices. Creating well-structured junctions for these interfaces, finding appropriate applications for the vast numbers of reported nano-oddities, and proving their biological innocence comprise major challenges in the field. Our Account is not meant to be an all-inclusive review of the field but should give a reader a firm grasp of the current state of DNA nanotechnology based on noncanonical DNA structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据