4.4 Article

Application of a Four-fluid Nozzle Spray Drier to Prepare Inhalable Rifampicin-containing Mannitol Microparticles

期刊

AAPS PHARMSCITECH
卷 9, 期 3, 页码 755-761

出版社

SPRINGER
DOI: 10.1208/s12249-008-9109-x

关键词

four-fluid nozzle; inhalation; microparticles; spray dry; tuberculosis

资金

  1. Japan Society for the Promotion of Science [17590041]
  2. Grants-in-Aid for Scientific Research [17590041] Funding Source: KAKEN

向作者/读者索取更多资源

The purpose of this study was to use a four-fluid nozzle spray drier as a new one-step method for preparing rifampicin (RFP)-containing mannitol microparticles. A RFP-acetone/methanol (2:1) solution and aqueous solutions of mannitol (MAN) were simultaneously supplied through different liquid passages of a four-fluid nozzle spray drier and then dried to obtain MAN microparticles containing RFP. Using a cascade impactor, the in vitro aerosol performance of RFP powder and RFP-MAN microparticles with 1:5, 1:10, and 1:20 ratios was compared. The in vivo retention of RFP in the lungs of rats after intratracheal administration of 1:20 RFP-MAN microparticles was also compared. The RFP-MAN microparticles had better aerosol performance than RFP powder and delivery to the lung stages improved as the fraction of MAN was increased. For the 1:20 RFP-MAN microparticles, deposition in stages 2-7 was approximately 43%, which is sufficient for treatment. Approximately 8% of the RFP-MAN microparticles were deposited in stages 6-7, which corresponds to alveoli containing alveolar macrophages. The initial retention of RFP in the lung following pulmonary delivery of 1:20 RFP-MAN microparticles was higher than following oral or intravenous administration of RFP, but the elimination was rapid, resulting in the disappearance of RFP from the lung within 4 h. The plasma concentration-time profile of RFP after intratracheal administration of 1:20 RFP-MAN microparticles was consistent with the profile for RFP retention in the lung. Addition of cholesterol or phosphatidylcholine to RFP had little effect on its retention in the lung. The RFP-MAN microparticles were effective for delivery of RFP to the lung, but the RFP rapidly removed from the lung into the blood circulation. This study demonstrated that RFP-containing MAN microparticles prepared in one step using the four-fluid nozzle spray drier efficiently deliver RFP to the lung, although methods must be developed to prolong its retention and improve targeting to alveolar macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据