4.3 Article

Phonon transport unveils the prevalent point defects in GaN

期刊

PHYSICAL REVIEW MATERIALS
卷 2, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.2.050602

关键词

-

资金

  1. Air Force Office of Scientific Research
  2. USAF [FA9550615-1-0187 DEF]
  3. European Union's Horizon Research and Innovation Programme [645776]

向作者/读者索取更多资源

Determining the types and concentrations of vacancies present in intentionally doped GaN is a notoriously difficult and long-debated problem. Here, we use an unconventional approach, based on thermal transport modeling, to determine the prevalence of vacancies in previous measurements. This allows us to provide conclusive evidence of the recent hypothesis that gallium vacancies in ammonothermally grown samples can be complexed with hydrogen. Our calculations for O-doped and Mg-O codoped samples yield a consistent picture interlinking dopant and vacancy concentration, carrier density, and thermal conductivity, in excellent agreement with experimental measurements. These results also highlight the predictive power of ab initio phonon transport modeling, and its value for understanding and quantifying defects in semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据