4.8 Article

Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

期刊

SCIENCE ADVANCES
卷 4, 期 2, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1701571

关键词

-

资金

  1. DOE Office of Science [DE-AC02-06CH11357]
  2. National Research Foundation of Korea (NRF) grant from the Korean government (Ministry of Science, ICT and Future Planning) [NRF-2015M2A8A2074795]

向作者/读者索取更多资源

Over the last several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally because of limitations in the available visualization techniques and the complexity of the phenomena. To overcome these limitations and elucidate the CHF enhancement mechanism on the structured surfaces, we introduce synchrotron x-ray imaging with high spatial (similar to 2 mu m) and temporal (similar to 20,000 Hz) resolutions. This technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据