4.7 Article

Thermo-mechanical post-treatment: A strategic approach to improve microstructure and mechanical properties of cold spray additively manufactured composites

期刊

MATERIALS & DESIGN
卷 156, 期 -, 页码 287-299

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2018.06.062

关键词

Additive manufacturing; Cold spraying; Thermo-mechanical treatment; Composite

资金

  1. National Natural Science Foundation of China [51671205]

向作者/读者索取更多资源

In recent time, cold spray additive manufacturing (CSAM) has emerged as a promising solid state manufacturing technique to produce thick deposits of pure metal, alloys and composites with limited risk of oxidation, phase transformations, and residual thermal stresses. This preliminary study highlights an effective post spray thermo-mechanical treatment (TMT) that can be used to efficiently heal out splat boundaries and rejuvenate mechanical properties of the as-sprayed composites. CSAMed B4C/Al composite was subjected to a series of TMTs via heating at similar to 500 degrees C in the furnace for 2 h followed by unidirectional rolling treatments with thickness reductions of 20, 40 and 60% in 1, 2 and 3 passes, respectively. Microstructural investigations revealed that as the thickness reduction was increased from 20%, matrix grains were extensively refined due to continuous dynamic recrystallization (CDRX). Moreover, bonding between Al/Al splats and B4C/Al interfaces was remarkably improved due to enhanced inter-particle diffusion activity. Consequently, yield strength (YS), ultimate tensile strength (UTS) and elongation (EL) of the as-sprayed composite were enhanced simultaneously. The TMTed sample with thickness reduction of 60% showed highest values of UTS and EL compared with the corresponding values of as-sprayed and conventionally heat treated samples. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据