4.5 Article

Molecular Dynamics Investigation of the Dielectric Decrement of Ion Solutions

期刊

CHEMELECTROCHEM
卷 5, 期 11, 页码 1444-1450

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/celc.201800158

关键词

dielectric constant; dielectric decrement; electric field; electrolyte; molecular simulation

资金

  1. Deutsche Forschungsgemeinschaft within the Cluster of Excellence RESOLV [EXC 1069]

向作者/读者索取更多资源

Molecular dynamics simulations, using a classical force field model, have been used to determine the dependence of the static relative dielectric constant of ion solutions with respect to the nature and concentration of the ions and the field strength. The experimentally observed effect of a reduction of the dielectric permittivity due to solvated ions is known as dielectric decrement. We used both the polarization fluctuation at zero field and the constant dielectric displacement method for finite fields to determine the dielectric constant of the bulk solution. All the experimentally observed tendencies of the dielectric decrement could be qualitatively reproduced. The analysis of different solute solvent radial distribution functions indicate that the dielectric decrement arises from the competition between the macroscopic electric field and the local water-ion interaction. The results suggest that the electric field eventually manages to overcome the local molecular interactions, breaking up the structure of the solvation shell and thus lowering the ion's effect on the dielectric constant. This effect seems to correlate with the solvation energy of the individual ions as well as the type of counter ion, indicating that also long range interactions might play a role. The results can be used to improve especially continuum electrolyte models, used to study electrochemical interfaces, where currently the dielectric decrement is generally not included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据