4.5 Article

Systematic Identification of Druggable Epithelial-Stromal Crosstalk Signaling Networks in Ovarian Cancer

期刊

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jnci/djy097

关键词

-

类别

资金

  1. Health and Human Services [W81XWH-17-1-0126, W81XWH-17-1-0146, W81XWH-16-1-0038]
  2. Ovarian Cancer Research Program, Department of Defense
  3. Gilder Foundation [RP100094, RP110532]
  4. Cancer Prevention and Research Institute of Texas (CPRIT)
  5. CPRIT Core Facility [RP160805]
  6. John J. Sie Foundation
  7. Mary K. Chapman Foundation [R01CA133057, R01CA142832, RC4CA156551, U01188388, U54CA151668, U54CA149196, UH2 TR000943]
  8. University of Texas MD Anderson Cancer Center Ovarian Cancer Specialized Program of Research Excellence (SPORE) grant [P50CA083639, P50CA098258]
  9. MD Anderson's Cancer Center Support Grant [P30CA016672]
  10. National Institutes of Health
  11. US Department ofn Cancer Research Fund
  12. Imaging for Neurosciences (BRAIN)
  13. Cancer Fighters of Houston
  14. John S. Dunn Research Foundation

向作者/读者索取更多资源

Background Bulk tumor tissue samples are used for generating gene expression profiles in most research studies, making it difficult to decipher the stroma-cancer crosstalk networks. In the present study, we describe the use of microdissected transcriptome profiles for the identification of cancer-stroma crosstalk networks with prognostic value, which presents a unique opportunity for developing new treatment strategies for ovarian cancer. Methods Transcriptome profiles from microdissected ovarian cancer-associated fibroblasts (CAFs) and ovarian cancer cells from patients with high-grade serous ovarian cancer (n = 70) were used as input data for the computational systems biology program CCCExplorer to uncover crosstalk networks between various cell types within the tumor microenvironment. The crosstalk analysis results were subsequently used for discovery of new indications for old drugs in ovarian cancer by computational ranking of candidate agents. Survival analysis was performed on ovarian tumor-bearing Dicer/Pten double-knockout mice treated with calcitriol, a US Food and Drug Administration-approved agent that suppresses the Smad signaling cascade, or vehicle control (9-11 mice per group). All statistical tests were two-sided. Results Activation of TGF--dependent and TGF--independent Smad signaling was identified in a particular subtype of CAFs and was associated with poor patient survival (patients with higher levels of Smad-regulated gene expression by CAFs: median overall survival = 15 months, 95% confidence interval [CI] = 12.7 to 17.3 months; vs patients with lower levels of Smad-regulated gene expression: median overall survival = 26 months, 95% CI = 15.9 to 36.1 months, P = .02). In addition, the activated Smad signaling identified in CAFs was found to be targeted by repositioning calcitriol. Calcitriol suppressed Smad signaling in CAFs, inhibited tumor progression in mice, and prolonged the median survival duration of ovarian cancer-bearing mice from 36 to 48 weeks (P = .04). Conclusions Our findings suggest the feasibility of using novel multicellular systems biology modeling to identify and repurpose known drugs targeting cancer-stroma crosstalk networks, potentially leading to faster and more effective cures for cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据