4.6 Article

Self-assembled atomically thin hybrid conjugated polymer perovskites with two-dimensional structure

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 6, 期 31, 页码 8405-8410

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8tc02548g

关键词

-

资金

  1. Ministry of Education (MOE)
  2. National University of Singapore (NUS)
  3. MOE [R-284-000-147-112]

向作者/读者索取更多资源

We show that self-assembly of protonated polymer chains and metal halide network gives rise to formation of two-dimensional (2D) hybrid perovskites, which incorporate protonated polyaniline as the conjugated organic cation component and PbI6 octahedra as the inorganic component. Single-and few-unit-cell-thick layers of these perovskites are obtained by mechanical exfoliation. Owing to the semiconducting behaviour of conjugated compounds, the atomically thin hybrid conjugated polymer perovskites reported here are expected to be considerably different from the quantum well systems based on unconjugated organic cation incorporating hybrid perovskites, in which the insulating organic layers act as potential barriers and the semiconducting inorganic layers act as potential wells. Besides, these materials are highly flexible in terms of chemical composition unlike conventional inorganic 2D materials, such as graphene, transition metal chalcogenides, transition metal oxides, boron nitride and black phosphorus. Different functional polymers/macromolecules could be self-assembled with a metal halide network in the same manner for the design of novel 2D hybrid perovskites for target applications. We also demonstrate that the conjugated polymer perovskites have tunable optical band gaps and they are highly stable against humidity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据