4.6 Article

The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 20, 页码 9506-9516

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta02467g

关键词

-

资金

  1. Austrian Climate and Energy Fund within the program Energy Emission Austria (FFG) [853 627]
  2. Slovenian Research Agency [P1-0055]
  3. Slovene Human Resources Development and Scholarship Fund
  4. project RETINA - European Union - European Regional Development Fund in the frame of the Cooperation Programme Interreg V-A Slovenia-Austria

向作者/读者索取更多资源

Recent advances in the development of non-fullerene acceptors have increased the power conversion efficiency of organic solar cells to approximately 13%. Fullerene-derivatives and non-fullerene acceptors possess distinctively different structural, optical and electronic properties, which also change the requirements on the polymer donor in non-fullerene organic solar cells. Therefore, in this study, the effect of the molecular weight of the conjugated polymer on the photovoltaic performance, charge carrier mobility, crystallization properties, film morphology, and non-geminate recombination dynamics is systematically investigated in polymer:small molecule organic solar cells using the low bandgap polymer PTB7-Th as the donor and the non-fullerene indacenodithiophene-based small molecule O-IDTBR as the acceptor. Among the examined polymer samples (50-300 kDa), high molecular weights of PTB7-Th (with an optimum molecular weight of 200 kDa) are advantageous to achieve high efficiencies up to 10%, which can be correlated with an increased crystallinity, an improved field-effect hole mobility (1.05 x 10(-2) cm(2) V-1 s(-1)), lower charge carrier trapping and a reduced activation energy of charge transport (98 meV). Bias-assisted charge extraction and transient photovoltage measurements reveal higher carrier concentrations (10(16) cm(-3)) and long lifetimes (4.5 s) as well as lower non-geminate recombination rate constants in the corresponding devices, supporting the high photocurrents (ca. 15.2 mA cm(-2)) and fill factors (>60%).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据