4.4 Article

Complexity is simple!

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP02(2018)039

关键词

AdS-CFT Correspondence; Black Holes in String Theory

资金

  1. ITF, Utrecht University

向作者/读者索取更多资源

In this note we investigate the role of Lloyd's computational bound in holographic complexity. Our goal is to translate the assumptions behind Lloyd's proof into the bulk language. In particular, we discuss the distinction between orthogonalizing and 'simple' gates and argue that these notions are useful for diagnosing holographic complexity. We show that large black holes constructed from series circuits necessarily employ simple gates, and thus do not satisfy Lloyd's assumptions. We also estimate the degree of parallel processing required in this case for elementary gates to orthogonalize. Finally, we show that for small black holes at fixed chemical potential, the orthogonalization condition is satisfied near the phase transition, supporting a possible argument for the Weak Gravity Conjecture first advocated in [1].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据