4.7 Article

Model Predictive Control for Smart Grids With Multiple Electric-Vehicle Charging Stations

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 10, 期 2, 页码 2127-2136

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2017.2789333

关键词

Smart power grid; plug-in electric vehicles; model predictive control; optimal power flow

资金

  1. Australian Research Council [DP130104617, DP170103750]
  2. U.K. Royal Academy of Engineering Research Fellowship [RF1415/14/22]
  3. U.K. Engineering and Physical Sciences Research Council (EPSRC) [EP/P019374/1]
  4. U.S. National Science Foundation [ECCS-1549881]
  5. EPSRC [EP/P019374/1] Funding Source: UKRI

向作者/读者索取更多资源

Next-generation power grids will likely enable concurrent service for residences and plug-in electric vehicles (PEVs). While the residence power demand profile is known and thus can be considered inelastic, the PEVs' power demand is only known after random PEV arrivals. PEV charging scheduling aims at minimizing the potential impact of the massive integration of PEVs into power grids to save service costs to customers while power control aims at minimizing the cost of power generation subject to operating constraints and meeting demand. This paper develops a model predictive control-based approach to address joint PEV charging scheduling and power control to minimize both PEV charging cost and energy generation cost in meeting both residence and PEV power demands. Unlike in related works, no assumptions are made about the probability distribution of PEVs' arrivals, knowledge of PEVs' future demand, or unlimited charging capacity of PEVs. The proposed approach is shown to achieve a globally optimal solution. Numerical results for IEEE benchmark power grids serving Tesla model S PEVs show the merit of this approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据