4.5 Article

A silencing-mediated enhancement of osteogenic differentiation by supramolecular ternary siRNA polyplexes comprising biocleavable cationic polyrotaxanes and anionic fusogenic peptides

期刊

BIOMATERIALS SCIENCE
卷 6, 期 2, 页码 440-450

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7bm01100h

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
  2. Japan Society for the Promotion of Science (JSPS) [JP16H01852]
  3. JSPS [JP17 K11901]
  4. Grants-in-Aid for Scientific Research [17K11901] Funding Source: KAKEN

向作者/读者索取更多资源

Gene silencing of noggin by small interfering RNA (siRNA) is a promising approach for the treatment of bone defects, because noggin deactivates bone morphogenetic protein-2 (BMP-2) and suppresses osteogenic differentiation. Here, we demonstrated the silencing of the noggin gene by siRNA polyplexes composed of noggin-targeted siRNA and biocleavable cationic polyrotaxanes (DMAE-SS-PRX). To improve the endosomal escape efficiencies of the DMAE-SS-PRX/siRNA polyplexes, anionic and fuso-genic GALA peptides were integrated onto the DMAE-SS-PRX/siRNA polyplexes via simple electrostatic interactions. The formation of ternary complexes was confirmed by gel electrophoresis, dynamic light scattering, and zeta-potential measurements. Although the association of GALA peptides with the DMAE-SS-PRX/siRNA polyplexes did not remarkably affect the cellular uptake efficiency of siRNA, the endosomal escape efficiency was remarkably increased for GALA/DMAE-SS-PRX/siRNA ternary polyplexes because of the endosomal and lysosomal membrane destabilization by GALA peptides. Consequently, GALA/DMAE-SS-PRX/siRNA ternary polyplexes showed significantly higher gene silencing efficiency against noggin and enhanced the BMP-2-mediated osteogenic differentiation efficiency. Therefore, we concluded that GALA/DMAE-SS-PRX/siRNA ternary polyplexes can be effective siRNA carriers for suppressing the expression of specific endogenous genes. Consequently, we believe that a more practical approach in vivo will be the combined use of BMP-2 and GALA/DMAE-SS-PRX/siRNA ternary polyplexes, because it will improve the efficacy of bone regeneration therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据