4.7 Article

Weak sharing of genetic association signals in three lung cancer subtypes: evidence at the SNP, gene, regulation, and pathway levels

期刊

GENOME MEDICINE
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13073-018-0522-9

关键词

GWAS; eQTL; Enhancer; Lung cancer subtype; Functional genomics; Pathway analysis

资金

  1. U.S. National Institutes of Health [R01LM012806, R01LM011177]
  2. National Institutes of General Medical Sciences [T32GM080178]
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [T32GM080178] Funding Source: NIH RePORTER
  4. NATIONAL LIBRARY OF MEDICINE [R01LM012806] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background: There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the somatic level to explore the genetic and biological differences among subtypes, little work has been done that interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for each subtype. Methods: We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels. We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000 Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological pathway analysis for each subtype. Results: We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC, respectively. Those SNPs had p < 1 x 10(-3) in the original GWAS or were within LD (r(2) > 0.8, Europeans) to the genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively. Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes. Conclusions: Our results suggest that the three lung cancer subtypes do not share much genetic signal at the SNP, gene, pathway, or regulatory level, which differs from the common subtype classification based upon histology. However, three (CHRNA5, IDH3A, and PSMA4) of the five genes shared between the subtypes are well-known lung cancer genes that may act as general lung cancer genes regardless of subtype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据