4.5 Article

Temperature effects on ballistic prey capture by a dragonfly larva

期刊

ECOLOGY AND EVOLUTION
卷 8, 期 8, 页码 4303-4311

出版社

WILEY
DOI: 10.1002/ece3.3975

关键词

attack velocity; capture success; climate change; escape velocity; predator-prey interaction; speed-accuracy trade-off; temperature

资金

  1. PROTECTODO Project (Region Centre Val de Loire)
  2. Erasmus Mundus Action 2 SUD-UE

向作者/读者索取更多资源

Understanding the effects of temperature on prey-predator interactions is a key issue to predict the response of natural communities to climate change. Higher temperatures are expected to induce an increase in predation rates. However, little is known on how temperature influences close-range encounter of prey-predator interactions, such as predator's attack velocities. Based on the speed-accuracy trade-off concept, we hypothesized that the increase in predator attack velocity by increasing temperature reduces the accuracy of the attack, leading to a lower probability of capture. We tested this hypothesis on the dragonfly larvae Anax imperator and the zooplankton prey Daphnia magna. The prey-predator encounters were video-recorded at high speed, and at three different temperatures. Overall, we found that (1) temperature had a strong effect on predator's attack velocities, (2) prey did not have the opportunity to move and/or escape due to the high velocity of the predator during the attack, and (3) neither velocity nor temperature had significant effects on the capture success. By contrast, the capture success mainly depended on the accuracy of the predator in capturing the prey. We found that (4) some 40% of mistakes were undershooting and some 60% aimed below or above the target. No lateral mistake was observed. These results did not support the speed-accuracy trade-off hypothesis. Further studies on dragonfly larvae with different morphological labial masks and speeds of attacks, as well as on prey with different escape strategies, would provide new insights into the response to environmental changes in prey-predator interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据