4.7 Article

Development of a High-Throughput, In Vivo Selection Platform for NADPH-Dependent Reactions Based on Redox Balance Principles

期刊

ACS SYNTHETIC BIOLOGY
卷 7, 期 7, 页码 1715-1721

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssynbio.8b00179

关键词

redox balance; high-throughput selection; NADPH-dependent pathways; D-lactate dehydrogenase; metabolic engineering

资金

  1. start-up fund of UC Irvine
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM093040, R01GM079383] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Bacteria undergoing anaerobic fermentation must maintain redox balance. In vivo metabolic evolution schemes based on this principle have been limited to targeting NADH-dependent reactions. Here, we developed a facile, specific, and high-throughput growth-based selection platform for NADPH-consuming reactions in vivo, based on an engineered NADPH-producing glycolytic pathway in Escherichia coli. We used the selection system in the directed evolution of a NADH-dependent D-lactate dehydrogenase from Lactobacillus delbrueckii toward utilization of NADPH. Through one round of selection, we obtained multiple enzyme variants with superior NADPH-dependent activities and protein expression levels; these mutants may serve as important tools in biomanufacturing D-lactate as a renewable polymer building block. Importantly, sequence analysis and computational protein modeling revealed that diverging evolutionary paths during the selection resulted in two distinct cofactor binding modes, which suggests that the high throughput of our selection system allowed deep searching of protein sequence space to discover diverse candidates en masse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据