4.7 Article

Ligand Binding Stabilizes Cellulosomal Cohesins as Revealed by AFM-based Single-Molecule Force Spectroscopy

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-27085-x

关键词

-

资金

  1. ERC Advanced Grant CelluFuel

向作者/读者索取更多资源

The cohesin-dockerin receptor-ligand family is the key element in the formation of multi-enzyme lignocellulose-digesting extracellular complexes called cellulosomes. Changes in a receptor protein upon binding of a ligand - commonly referred to as allostery - are not just essential for signalling, but may also alter the overall mechanical stability of a protein receptor. Here, we measured the change in mechanical stability of a library of cohesin receptor domains upon binding of their dockerin ligands in a multiplexed atomic force microscopy-based single-molecule force spectroscopy experiment. A parallelized, cell-free protein expression and immobilization protocol enables rapid mechanical phenotyping of an entire library of constructs with a single cantilever and thus ensures high throughput and precision. Our results show that dockerin binding increases the mechanical stability of every probed cohesin independently of its original folding strength. Furthermore, our results indicate that certain cohesins undergo a transition from a multitude of different folds or unfolding pathways to a single stable fold upon binding their ligand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据