4.7 Article

Simulating polaron biophysics with Rydberg atoms

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-27232-4

关键词

-

资金

  1. (Polish) National Science Center [2016/22/E/ST2/00555]
  2. Foundation for Fundamental Research on Matter (FOM)
  3. Netherlands Organisation for Scientific Research (NWO)
  4. European Union H2020 FET Proactive project RySQ [640378]

向作者/读者索取更多资源

Transport of excitations along proteins can be formulated in a quantum physics context, based on the periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding equations are very challenging to obtain on classical computers. Approximate solutions based on the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the protein, however, experimentally these solutions have never been directly observed. Here we propose an alternative study of biophysical transport phenomena based on a quantum simulator composed of a chain of ultracold dressed Rydberg atoms, which allows for a direct observation of the Davydov phenomena. We show that there is an experimentally accessible range of parameters where the system directly mimics the Davydov equations and their solutions. Moreover, we show that such a quantum simulator has access to the regime in between the small and large polaron regimes, which cannot be described perturbatively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据