4.7 Article

Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-018-19484-x

关键词

-

资金

  1. Newcastle University
  2. Engineering and Physical Sciences Research Council [EP/K039083/1, EP/K035142/1]
  3. EPSRC [EP/R512692/1]
  4. Medical Research Council [MR/N010345/1]
  5. Engineering and Physical Sciences Research Council [EP/K035142/1, EP/K039083/1, EP/G049076/1] Funding Source: researchfish
  6. Medical Research Council [MR/N010345/1] Funding Source: researchfish
  7. EPSRC [EP/K039083/1, EP/G049076/1, EP/K035142/1] Funding Source: UKRI
  8. MRC [MR/N010345/1] Funding Source: UKRI

向作者/读者索取更多资源

Titanium-based implants are ubiquitous in the healthcare industries and often suffer from bacterial attachment which results in infections. An innovative method of reducing bacterial growth is to employ nanostructures on implant materials that cause contact-dependent cell death by mechanical rupture of bacterial cell membranes. To achieve this, we synthesized nanostructures with different architectures on titanium surfaces using hydrothermal treatment processes and then examined the growth of Staphylococcus epidermidis on these surfaces. The structure obtained after a two-hour hydrothermal treatment (referred to as spear-type) showed the least bacterial attachment at short times but over a period of 6 days tended to support the formation of thick biofilms. By contrast, the structure obtained after a three-hour hydrothermal treatment (referred to as pocket-type) was found to delay biofilm formation up to 6 days and killed 47% of the initially attached bacteria by penetrating or compressing the bacteria in between the network of intertwined nano-spears. The results point to the efficacy of pocket-type nanostructure in increasing the killing rate of individual bacteria and potentially delaying longer-term biofilm formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据