4.7 Article

Aligned laminin core-polydioxanone/collagen shell fiber matrices effective for neuritogenesis

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-23958-3

关键词

-

资金

  1. Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) - Ministry of Health & Welfare, Republic of Korea [HI15C1535]
  2. Bio & Medical Technology Development Program of the National Research Foundation (NRF)
  3. Korean government (MSIPMOHW) [2017M3A9E4048170]
  4. Basic Science Research Program through the NRF of Korea - Ministry of Education [2016R1D1A1B03931076]

向作者/读者索取更多资源

Neural tissue regeneration is a significant challenge, because severe nerve injury is quite difficult to regenerate spontaneously. Although, many studies have been devoted to promote nerve regeneration, there are still many technical challenges to achieve satisfactory results. In this study, we designed biomimetic matrices composed of aligned laminin core-polydioxanone/collagen shell (Lam-PDO/Col) fibers, which can provide both topographical and biochemical cues for promoting neuritogenesis. The aligned Lam-PDO/Col core-shell fiber matrices were fabricated by magnetic field-assisted electrospinning with the coaxial system, and their potential as biofunctional scaffolds for promoting neuritogenesis was explored. It was demonstrated that the aligned Lam-PDO/Col core-shell fibers were successfully fabricated, and the laminin in the core of fibers was steadily and continuously released from fibers. In addition, the cellular behaviors of hippocampal neuronal cells on the matrices were significantly enhanced. Moreover, the aligned Lam-PDO/Col fiber matrices effectively improved and guided neurite outgrowth as well as the neurogenic differentiation by providing both topographical and biochemical cues through aligned fiber structure and sustained release of laminin. Collectively, it is suggested that the aligned Lam-PDO/Col core-shell fiber matrices are one of the most promising approaches for promoting neuritogenesis and neural tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据