4.7 Article

Rapid identification of a stripe rust resistant gene in a space-induced wheat mutant using specific locus amplified fragment (SLAF) sequencing

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-21489-5

关键词

-

资金

  1. National Natural Science Foundation of China [31501620, 31701911]
  2. open project program of Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education [KF201707]
  3. open project program of Hubei Collaborative Innovation Center for Grain Industry [LXT-16-09]
  4. open project program of State Key Laboratory for Biology of Plant Diseases and Insect Pests [SKLOF201707]

向作者/读者索取更多资源

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat. Resistant cultivars are the preferred strategy to control the disease. Space-induced wheat mutant R39 has adult-plant resistance (APR) to Pst. Genetic analysis indicated that a single recessive gene, designated YrR39, was responsible for the APR of R39 to Pst. Bulked segregant analysis (BSA) combined with a SLAF sequencing (SLAF-seq) strategy was used to fine-map YrR39 to a 17.39 Mb segment on chromosome 4B. The region was confirmed by analysis with simple sequence repeat (SSR) markers. A total of 126 genes were annotated in the region and 21 genes with annotations associated with disease response were selected for further qRT-PCR analysis. The candidate gene Traes_4BS_C868349E1 (annotated as an F-box/LRR-repeat protein) was up-regulated after 12, 24, 48, and 96 hours post inoculation with Pst, suggesting it is likely involved in the resistance. The current study demonstrated that BSA combined with SLAF-seq for SNP discovery is an efficient approach for mapping and identifying candidate functional gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据