4.7 Article

The effect of environmental factors and migration dynamics on the prevalence of antibioticresistant Escherichia coli in estuary environments

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-20077-x

关键词

-

资金

  1. National Natural Science Foundation of China [41406088, 21377032]
  2. Chinese Polar Environment Comprehensive Investigation and Assessment Programs [2016-02-01, 2016-04-01, 2016-04-03]
  3. Marine public welfare scientific research projects [201105013]
  4. Liaoning BaiQianWan Talents Program [2017B7]
  5. China Scholarship Council [CSC201504180002]
  6. Foundation of polar science key laboratory, SOA, China [KP201208]

向作者/读者索取更多资源

Understanding the antibiotic resistance transmission mechanisms and migration dynamics of antibiotic-resistant bacteria (ARB) in the natural environment is critical given the increasing prevalence of antibiotic resistance. The aim of this study was to examine the fate of sulfonamide-resistant fecal bacteria (E. coli) in an estuary ecosystem and to explore the role and contribution of environmental factors in this process. The prevalence of sulfonamide-resistance status of E. coli was analyzed over different seasons in two estuary systems. Environmental factors and disturbance indices of anthropogenic activities were evaluated by detecting antibiotic concentrations, heavy metal abundance and other physicochemical parameters. The abundances of antibiotic-resistant E. coli were significantly attenuated during land-sea migration suggesting that estuary environments play a natural mitigation role in the contamination of freshwaters by antibiotic-resistant E. coli. Additionally, environmental factors and disturbance indices of anthropogenic activities significantly correlated with the distribution and migration of antibiotic-resistant E. coli in the estuaries. Lastly, simulation experiments suggested differential adaptability between antibiotic-resistant and non-resistant E. coli towards environmental changes in estuary environments. Meanwhile, our results indicate that low concentrations of antibiotics will not increase the competitive advantage of resistant E. coli in estuaries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据