4.6 Article

Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts via a facile CTAB-assisted synthesis

期刊

RSC ADVANCES
卷 8, 期 27, 页码 14888-14897

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra02327a

关键词

-

资金

  1. Shandong Provincial Natural Science Foundation [ZR2017BB004]
  2. Shandong Province Major Science and Technology Innovation Project [2017CXGC1004]
  3. Shandong Province Key Research and Development Plan [2017GGX202004]
  4. National Natural Science Foundation of China [21777055]

向作者/读者索取更多资源

Nanosized copper-doped ceria CuCe catalysts with a large surface area and well-developed mesoporosity were synthesized by a surfactant-assisted co-precipitation method. The prepared catalysts with different Cu doping concentrations were characterized by XRD, DLS analysis, TEM, BET, Raman, H-2-TPR and in situ DRIFTS techniques. The influence of Cu content on their catalytic performance for CO oxidation was also studied. The XRD results indicate that at a lower content, the Cu partially incorporates into the CeO2 lattice to form a CuCe solid solution, whereas a higher Cu doping causes the formation of bulk CuO. Copper doping favors an increase in the surface area of the CuCe catalysts and the formation of oxygen vacancies, thereby improving the redox properties. The CuCe samples exhibit higher catalytic performance compared to bare CeO2 and CuO catalysts. This is ascribed to the synergistic interaction between copper oxide and ceria. In particular, the Cu0.1Ce catalyst shows the highest catalytic performance (T-50 = 59 degrees C), as well as excellent stability. The in situ DRIFTS results show that CO adsorbed on surface Cu+ (Cu+-CO species) can easily react with the active oxygen, while stronger adsorption of carbonate-like species causes catalyst deactivation during the reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据