4.6 Article

Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells

期刊

RSC ADVANCES
卷 8, 期 7, 页码 3637-3645

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra12321c

关键词

-

资金

  1. National Natural Science Foundation of China [51732004, 91433106, 21703071]
  2. Fundamental Research Funds for the Central Universities in China

向作者/读者索取更多资源

Alloyed structures of quantum dot light-harvesting materials favor the suppression of unwanted charge recombination as well as acceleration of the charge extraction and therefore the improvement of photovoltaic performance of the resulting solar cell devices. Herein, the advantages of Zn-Cu-In-S (ZCIS) alloy QD serving as light-harvesting sensitizer materials in the construction of quantum dot-sensitized solar cells (QDSCs) were compared with core/shell structured CIS/ZnS, as well as pristine CIS QDs. The built QDSCs with alloyed Zn-Cu-In-S QDs as photosensitizer achieved an average power conversion efficiency (PCE) of 8.47% (V-oc = 0.613 V, J(sc) = 22.62 mA cm(-2), FF = 0.610) under AM 1.5G one sun irradiation, which was enhanced by 21%, and 82% in comparison to those of CIS/ZnS, and CIS based solar cells, respectively. In comparison to cell device assembled by the plain CIS and core/shell structured CIS/ZnS, the enhanced photovoltaic performance in ZCIS QDSCs is mainly ascribed to the faster photon generated electron injection rate from QD into TiO2 substrate, and the effective restraint of charge recombination, as confirmed by incident photon-to-current conversion efficiency (IPCE), open-circuit voltage decay (OCVD), as well as electrochemical impedance spectroscopy (EIS) measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells

Guizhi Zhang, Jianxin Zhang, Yongyu Liao, Zhenxiao Pan, Huashang Rao, Xinhua Zhong

Summary: A novel hole transport material CSI NCs was synthesized and used in carbon electrode-based perovskite solar cells, leading to improved hole extraction efficiency and photovoltaic performance by optimizing energy level alignment between the perovskite and carbon electrode.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Multidisciplinary

Optically Excited Lasing in a Cavity-Based, High-Current-Density Quantum Dot Electroluminescent Device

Namyoung Ahn, Young-Shin Park, Clement Livache, Jun Du, Kivanc Gungor, Jaehoon Kim, Victor I. Klimov

Summary: Laser diodes based on solution-processable materials have immense potential in various technologies. However, there have been challenges in achieving QD laser diodes, including rapid nonradiative decay and device degradation. In this study, we overcome these challenges and demonstrate optically excited lasing from fully functional high-current density electroluminescent devices.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals

Shan He, Jun Du, Wenfei Liang, Boyu Zhang, Guijie Liang, Kaifeng Wu

Summary: Thermally activated delayed photoluminescence (TADPL) is an exotic mechanism observed in molecule-functionalized semiconductor nanocrystals, which allows for energy harvesting from dark molecular triplets and controllable, long-lived photoluminescence. Despite successful coverage of the visible spectrum, TADPL in nanocrystals is less efficient compared to thermally activated delayed fluorescence (TADF) molecules. In this study, bright, near-infrared TADPL was achieved in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, by efficient triplet energy transfer from nanocrystals to ligands and subsequent thermally activated reverse energy transfer.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Engineering, Environmental

Crystallization control of air-processed wide-bandgap perovskite for carbon-based perovskite solar cells with 17.69% efficiency

Lingcong Li, Ruike Zhang, Zhujie Wu, Yao Wang, Jin Hong, Huashang Rao, Zhenxiao Pan, Xinhua Zhong

Summary: The preparation of high-efficiency perovskite solar cells in ambient air environment is challenging. In this study, a simple component engineering strategy is proposed to regulate the crystallization process of perovskite film, leading to improved crystallinity, reduced defect state density, and suppressed non-radiative recombination processes. The efficiency of the carbon-based perovskite solar cells reached a record high.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Interfacial energy-level alignment via poly-3-hexylthiophene-CsPbI3 quantum dots hybrid hole conductor for efficient carbon-based CsPbI2Br solar cells br

Jianxin Zhang, Guizhi Zhang, Yongyu Liao, Zhenxiao Pan, Huashang Rao, Xinhua Zhong

Summary: In this study, a novel hybrid hole conductor, Poly-3-hexylthiophene - CsPbI3 quantum dots (P-QD), was used to improve hole extraction in CsPbI2Br C-PSCs. The P-QD hybrid hole conductor effectively improved hole extraction by aligning perovskite/carbon energy-level and extending the optical response range of CsPbI2Br solar cells, resulting in an increased power conversion efficiency from 13.49% to 15.04%. This strategy provides a new approach for the construction of hole transport layers in carbon-based perovskite solar cells.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Optics

Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals

Wenfei Liang, Chengming Nie, Jun Du, Yaoyao Han, Guohui Zhao, Fan Yang, Guijie Liang, Kaifeng Wu

Summary: Researchers have used zinc-doped CuInSe2 nanocrystals as a low-cost and non-toxic alternative to lead chalcogenides for near-infrared upconversion. Achieving upconversion to yellow with an external quantum efficiency of 16.7%, this system can be combined with photoredox catalysis for efficient near-infrared-driven organic synthesis and polymerization, overcoming the issue of reabsorption loss. Additionally, the wide light absorption range of these nanocrystals enables rapid reactions under indoor sunlight, extending the potential of "solar synthesis" in the near-infrared spectrum.

NATURE PHOTONICS (2023)

Article Chemistry, Physical

All-Inorganic CsPb2I4Br/CsPbI2Br 2D/3D Bulk Heterojunction Boosting Carbon-Based CsPbI2Br Perovskite Solar Cells with an of Over 15%

Cuiting Kang, Shuaihang Xu, Huashang Rao, Zhenxiao Pan, Xinhua Zhong

Summary: A strategy for constructing an all-inorganic 2D/3D CsPb2I4Br/CsPbI2Br bulk heterojunction (BHJ) by in situ reaction of excess PbI2 in a precursor solution with CsPbI2Br during annealing is proposed. The formed 2D/3D BHJ effectively passivates defects in 3D CsPbI2Br and reduces nonradiative recombination loss in carbon electrode-based perovskite solar cells (C-PSCs). The optimized C-PSCs achieve an open-circuit voltage of 1.32 V and an efficiency of 15.25%, which are the best results for CsPbI2Br-based C-PSCs.

ACS ENERGY LETTERS (2023)

Article Chemistry, Physical

Dual Ligand Capped Quantum Dots Improving Loading Amount for High- Efficiency Quantum Dot-Sensitized Solar Cells

Zhengyan Zhang, Han Song, Wenran Wang, Huashang Rao, Yueping Fang, Zhenxiao Pan, Xinhua Zhong

Summary: A ligand design strategy using mercaptopropionic acid (MPA) and inorganic ligands (ILs) as dual ligands on the surface of quantum dots (QDs) is developed to enhance the loading amount and optoelectronic performance of QD sensitizers. The ILs not only facilitate QD loading but also reduce interdot repulsion and form dense QD layers, while the pseudohalide SCN- has a passivation effect on QD surfaces and suppresses defect trap states. As a result, QDSCs based on dual SCN/MPA ligands achieve a certified efficiency of 16.10%, a new record for liquid junction QD solar cells.

ACS ENERGY LETTERS (2023)

Article Chemistry, Multidisciplinary

Anti-Dissociation Passivation via Bidentate Anchoring for Efficient Carbon-Based CsPbI2.6Br0.4 Solar Cells

Yongyu Liao, Jianxin Zhang, Wenran Wang, Zechao Yang, Rong Huang, Jiage Lin, Lei Che, Guoying Yang, Zhenxiao Pan, Huashang Rao, Xinhua Zhong

Summary: Surface molecular passivation is an effective strategy to reduce defect-assisted recombination and nonradiative recombination loss in perovskite solar cells (PSCs). However, most passivating molecules bind weakly to the perovskite surface, resulting in weak passivation effects. In carbon-based perovskite solar cells (C-PSCs), the molecular passivation effect is more susceptible to disturbance during the preparation of carbon electrodes. In this study, a bidentate ligand 2,2'-Bipyridine (2Bipy) is used to passivate surface defects of CsPbI2.6Br0.4 perovskite films. The results show that 2Bipy exhibits a stronger chelation effect and achieves better passivation performance compared to monodentate pyridine (Py). As a result, the efficiency of C-PSCs is significantly improved, setting a new record efficiency for hole transport material-free inorganic C-PSCs.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Pure-Iodide Wide-Bandgap Perovskites for High-Efficiency Solar Cells by Crystallization Control

Ruike Zhang, Lingcong Li, Wenran Wang, Zhujie Wu, Yao Wang, Jin Hong, Huashang Rao, Zhenxiao Pan, Xinhua Zhong

Summary: Researchers reported a new method for fabricating wide-bandgap perovskite solar cells without acid treatment. Formamidine/cesium (FA/Cs) as an additive can effectively control the crystallization process of perovskite films, improving the crystallinity and efficiency of the solar cells.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

1D Choline-PbI3-Based Heterostructure Boosts Efficiency and Stability of CsPbI3 Perovskite Solar Cells

Jianxin Zhang, Guizhi Zhang, Pei-Yang Su, Rong Huang, Jiage Lin, Wenran Wang, Zhenxiao Pan, Huashang Rao, Xinhua Zhong

Summary: Defects in perovskite can be effectively passivated by choline halide (ChX), which binds with charged point defects. We found that ChI can react with CsPbI3 to form a novel crystal phase of one-dimensional (1D) ChPbI(3), which improves the photoluminescence lifetime and stability of the CsPbI3 film. The CsPbI3-based carbon-based solar cells achieved high efficiencies and set new records in hole transport material-free inorganic solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Self-Driven Prenucleation-Induced Perovskite Crystallization Enables Efficient Perovskite Solar Cells

Yao Wang, Lingcong Li, Zhujie Wu, Ruike Zhang, Jin Hong, Jianxin Zhang, Huashang Rao, Zhenxiao Pan, Xinhua Zhong

Summary: A self-driven prenucleation strategy using formamide as the co-solvent is proposed to achieve fast nucleation and improve the crystalline quality of perovskite film.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Improving the Electron Transport Performance of TiO2 Film by Regulating TiCl4 Post-Treatment for High-Efficiency Carbon-Based Perovskite Solar Cells

Zhujie Wu, Yao Wang, Lingcong Li, Ruike Zhang, Jin Hong, Rong Huang, Lei Che, Guoying Yang, Huashang Rao, Zhenxiao Pan, Xinhua Zhong

Summary: In this study, a mild continuous pH control strategy using urea as a weak organic base was proposed to regulate the hydrolysis process of TiCl4 post-treatment. This strategy facilitated the formation of an anatase-dominated TiO2 surface layer on the mesoporous TiO2, leading to reduced defect density and improved charge extraction efficiency in perovskite solar cells (PSCs). The fabricated carbon electrode-based PSCs (C-PSCs) achieved an efficiency of 18.08%, the highest among C-PSCs based on wide-bandgap perovskites.
Article Materials Science, Multidisciplinary

Enhancing hole extraction via carbon nanotubes/poly(3-hexylthiophene) composite for carbon-based CsPbI2Br solar cells with a new record efficiency

Guizhi Zhang, Jianxin Zhang, Zhenxiao Pan, Huashang Rao, Xinhua Zhong

Summary: Researchers synthesized a carbon nanotube/poly(3-hexylthiophene) (CNT/P3HT) composite as a hole transport material to construct state-of-the-art carbon-based perovskite solar cells (C-PSCs). The CNT in the composite provides a high-speed channel for hole transmission, lowering charge transmission impedance and improving hole extraction efficiency. Using this composite, CsPbI2Br C-PSCs achieved an increase in open-circuit voltage from 1.233 to 1.355 V and power conversion efficiency from 13.29% to 15.56%, setting a new record for all-inorganic perovskite C-PSCs.

SCIENCE CHINA-MATERIALS (2023)

Article Biotechnology & Applied Microbiology

Role of 6-phosphogluconate dehydrogenase enzyme 1 in growth and virulence of Toxoplasma gondii and development of attenuated live vaccine

Qinghong Guo, Xuefang Guo, Nuo Ji, Bang Shen, Xinhua Zhong, Lihua Xiao, Yaoyu Feng, Ningbo Xia

Summary: Toxoplasma gondii is a widespread pathogen that infects various warm-blooded animals, including humans, leading to significant socioeconomic and healthcare burdens. Despite the lack of an ideal toxoplasmosis vaccine, targeting key pathways in the parasite's metabolism shows promise for new antiparasitic strategies.

MICROBIAL BIOTECHNOLOGY (2023)

暂无数据