4.6 Article

Short-wave near-infrared emissive GdPO4: Nd3+ theranostic probe for in vivo bioimaging beyond 1300 nm

期刊

RSC ADVANCES
卷 8, 期 23, 页码 12832-12840

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra12864a

关键词

-

资金

  1. Science and Technology Planning Project of Hunan Province [2017RS3031]
  2. Scientific Research Fund of Hunan Provincial Education Department [13B062]
  3. National Natural Science Foundation of China [21671064]

向作者/读者索取更多资源

The optical probes working in the second near-infrared (NIR-II) window have attracted increasing research interest for their advantages of high tissue penetration depth, low autofluorescence, and unprecedentedly improved imaging sensitivity and spatial resolution. Therefore, it is of great significance to design a new nanoplatform by integration of NIR-II optical imaging and drug delivery functions. Herein, a multifunctional nanoplatform based on GdPO4:Nd3+ yolk-shell sphere was developed for dual-modal in vivo NIR-II/X-ray bioimaging and pH-responsive drug delivery. The in vivo NIR-II bioimaging and real-time tracking presented that these probes were mainly accumulated in liver and spleen. Moreover, owing to the large X-ray absorption coefficient of Gd3+, these probes are successfully used as superior X-ray imaging agents than iobitridol. The in vivo toxicity assessments demonstrate the low biotoxicity of the GdPO4:Nd3+ spheres in living animals. More importantly, apart from the excellent dual-modal bioimaging, these yolk-shell-structured probes were also used as ideal nanotransducer for pH-responsive drug delivery of doxorubicin (DOX). These findings open up the opportunity of designing theranostic nanoplatform with integration of imaging-based diagnosis and therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据