4.2 Article

The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling

期刊

EPIDEMICS
卷 25, 期 -, 页码 20-25

出版社

ELSEVIER
DOI: 10.1016/j.epidem.2018.05.001

关键词

Plague; Outbreak; Modelling; Stochastic; Climate; Seasonal; Madagascar

资金

  1. Alfons und Gertrud Kassel-Stiftung

向作者/读者索取更多资源

From August to November 2017, Madagascar endured an outbreak of plague. A total of 2417 cases of plague were confirmed, causing a death toll of 209. Public health intervention efforts were introduced and successfully stopped the epidemic at the end of November. The plague, however, is endemic in the region and occurs annually, posing the risk of future outbreaks. To understand the plague transmission, we collected real-time data from official reports, described the outbreaks characteristics, and estimated transmission parameters using statistical and mathematical models. The pneumonic plague epidemic curve exhibited multiple peaks, coinciding with sporadic introductions of new bubonic cases. Optimal climate conditions for rat flea to flourish were observed during the epidemic. Estimate of the plague basic reproduction number during the large wave of the epidemic was high, ranging from 5 to 7 depending on model assumptions. The incubation and infection periods for bubonic and pneumonic plague were 4.3 and 3.4 days and 3.8 and 2.9 days, respectively. Parameter estimation suggested that even with a small fraction of the population exposed to infected rat fleas (1/10,000) and a small probability of transition from a bubonic case to a secondary pneumonic case (3%), the high human-to-human transmission rate can still generate a large outbreak. Controlling rodent and fleas can prevent new index cases, but managing human-to-human transmission is key to prevent large-scale outbreaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据