4.8 Article

Superlattice Formation of Crystal Water in Layered Double Hydroxides for Long-Term and Fast Operation of Aqueous Rechargeable Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201703572

关键词

aqueous rechargeable batteries; crystal water; layered double hydroxides; solid-solution mixing; superlattices

资金

  1. Samsung Research Funding Centre of Samsung Electronics [SRFC-MA1602-05]

向作者/读者索取更多资源

Aqueous rechargeable batteries (ARBs) are gaining increasing attention as alternatives to conventional nonaqueous lithium ion batteries. However, finding electrode materials with competitive electrochemical properties in various aspects is challenging. Moreover, the operation mechanism of some of high performance electrode materials is not fully understood. Here, an alpha-phase layered double hydroxide (alpha-LDH) working in alkaline electrolytes as an ARB cathode is reported. On charge, OH- carrier ions intercalate into the interlayer space and react with protons detached from the host structure to yield crystal water. This crystal water is then arranged in a superlattice during charging to accommodate carrier ions and stabilize the structure. The solid solution mixing of cobalt and nickel also stabilizes the structure during the wide range of redox swing of Ni from 2+ to 4+. In pairing with Fe3O4/Fe(OH)(2) mixture, the alpha-LDH exhibits 198.0 mA h g(-1) at 3 A g(-1), 68.3% capacity retention after 10 000 cycles, and 172.5 mA h g(-1) at 1 min charge, demonstrating the promise of hydrated compounds for ARB electrodes. The present study elucidates that the arrangement of crystal water within the host framework plays a critical role in determining the electrochemical performance of the corresponding hydrated active compound in aqueous media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据