4.8 Article

Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

期刊

ACS CATALYSIS
卷 8, 期 8, 页码 7688-7697

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b02112

关键词

zeolites; DFT; Al siting; boron ZSM-5; MTO; catalytic cracking

资金

  1. European Union [ERC-AdG-2014-671093]
  2. Spanish Government-MINECO through Severo Ochoa [SEV-2016-0683]
  3. China Scholarship Council (CSC)
  4. [CTQ2015-70126-R]

向作者/读者索取更多资源

Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of AI into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channel intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratios, followed by B removal in a postsynthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as a test reaction. The higher selectivity to propene and lower C-4(=)/C-3(=) ratio in the samples synthesized with B and subsequently deboronated can be related to a larger concentration of acid sites in 10R channels, where monomolecular cracking occurs. Finally, several ZSM-5 samples have been tested in the methanol to propene reaction, and those synthesized through the B -assisted method show longer catalytic lifetime, higher propene yield, and lower yield of alkanes and aromatics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Applied

Minimizing rare earth content of FCC catalysts: Understanding the fundamentals on combined P-La stabilization

Cristina Martinez, Alejandro Vidal-Moya, Bilge Yilmaz, C. P. Kelkar, Avelino Corma

Summary: Fluidized Catalytic cracking (FCC) is a main conversion process in refineries, using Y zeolite as the main source of activity and selectivity. A new Y zeolite catalyst, Phinesse(TM), based on partial substitution of RE by P, has been developed and shown to have similar performance to the conventional RE stabilized counterpart. The hydrothermal stability of different USYs with different dealumination degrees, containing P or La alone or a combination of both stabilizing elements, was compared. The results provide insights into the benefits of P-La stabilization observed in the commercial PhinesseTM catalyst.

CATALYSIS TODAY (2023)

Review Chemistry, Multidisciplinary

Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles

Lichen Liu, Avelino Corma

Summary: This review discusses the structure, synthesis, and catalytic applications of heterogeneous bimetallic catalysts, including binuclear sites, nanoclusters, and nanoparticles. Recent progress in the field of bimetallic catalysts is highlighted, along with the future research directions and prospects in both fundamental and practical aspects of heterogeneous catalysis.

CHEMICAL REVIEWS (2023)

Article Chemistry, Multidisciplinary

MOF-Triggered Synthesis of Subnanometer Ag02 Clusters and Fe3+Single Atoms: Heterogenization Led to Efficient and Synergetic One- Pot Catalytic Reactions

Estefan Tiburcio, Yongkun Zheng, Cristina Bilanin, Juan Carlos Hernandez-Garrido, Alejandro Vidal-Moya, Judit Oliver-Meseguer, Nuria Martin, Marta Mon, Jesus Fernando-Soria, Donatella Armentano, Antonio Leyva-Perez, Emilio Pardo

Summary: This study reports the characterization of a combination of well-defined Fe3+ isolated single-metal atoms and Ag2 subnanometer metal clusters within a metal-organic framework. The resulting material exhibits superior catalytic activity for the direct conversion of styrene to phenylacetylene.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Multidisciplinary Sciences

Approaching enzymatic catalysis with zeolites or how to select one reaction mechanism competing with others

Pau Ferri, Chengeng Li, Daniel Schwalbe-Koda, Mingrou Xie, Manuel Moliner, Rafael Gomez-Bombarelli, Mercedes Boronat, Avelino Corma

Summary: Approaching the level of molecular recognition of enzymes with solid catalysts is a challenging goal, achieved in this work for the competing transalkylation and disproportionation of diethylbenzene catalyzed by acid zeolites. The key diaryl intermediates for the two competing reactions only differ in the number of ethyl substituents in the aromatic rings, and therefore finding a selective zeolite able to recognize this subtle difference requires an accurate balance of the stabilization of reaction intermediates and transition states inside the zeolite microporous voids.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Encapsulation of Palladium Carbide Subnanometric Species in Zeolite Boosts Highly Selective Semihydrogenation of Alkynes

Risheng Bai, Guangyuan He, Lin Li, Tianjun Zhang, Junyan Li, Xingxing Wang, Xiumei Wang, Yongcun Zou, Donghai Mei, Avelino Corma, Jihong Yu

Summary: In this work, a carbonization-reduction method was used to create palladium carbide subnanometric species within pure silicate MFI zeolite. The developed catalyst showed superior performance in the selective hydrogenation of alkynes.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

From Well-Defined Clusters to Functional Materials: Molecular Engineering of Amorphous Molybdenum Sulfides for Hydrogen Evolution Electrocatalysis

Francisco Gonell, Miriam Rodenes, Santiago Martin, Mercedes Boronat, Ivan Sorribes, Avelino Corma

Summary: Developing precious-metal-free electrocatalysts for the hydrogen evolution reaction (HER) is crucial. Amorphous molybdenum sulfide-based materials provide highly active HER electrocatalysts by introducing active sites at both the edge positions and the typically inactive basal planes. The bottom-up synthesis using molecular complexes with Mo3S4 and Mo3S7 cluster cores enhances the HER activity and allows the modification of the derived materials with atomic-scale precision.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Multidisciplinary

Multifunctional Catalysis of Nanosheet Defective Molybdenum Sulfide Basal Planes for Tandem Reactions Involving Alcohols and Molecular Hydrogen

Miriam Rodenes, Frederic Dhaeyere, Santiago Martin, Patricia Concepcion, Avelino Corma, Ivan Sorribes

Summary: A defect-engineered molybdenum sulfide catalyst is used to establish straightforward synthetic processes using alcohols. Developing tandem catalytic strategies based on readily available, stable, and renewable feedstocks is crucial for sustainable chemical industries. The catalyst, defect-engineered basal planes of a molybdenum sulfide nanomaterial ({Mo3S4}( n )), enables one-pot single-step synthesis and facilitates various coupling reactions involving alcohol dehydrogenation and hydrogen activation processes.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Multidisciplinary

Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics

Reisel Millan, Estefania Bello-Jurado, Manuel Moliner, Mercedes Boronat, Rafael Gomez-Bombarelli

Summary: This study reports a machine learning method to accurately simulate the mobility of Cu ions in Cu-exchanged zeolites, revealing that aluminum pairing accelerates local hopping dynamics and increased NH3 concentration enhances long-range diffusion of Cu ions. Furthermore, the probability of finding metal complexes in the same cage increases with higher Cu and Al content.

ACS CENTRAL SCIENCE (2023)

Article Materials Science, Multidisciplinary

Synthesis and mechanistic insights of SiO2@WO3@Fe3O4 as a Novel Supported Photocatalyst for Wastewater Remediation under Visible Light

Ander Diego-Lopez, Oscar Cabezuelo, Alejandro Vidal-Moya, M. Luisa Marin, Francisco Bosca

Summary: A new optimized photocatalyst with SiO2 as a supporting substrate and a shell of WO3 nanoparticles decorated with Fe3O4 nanocrystals has been developed for wastewater remediation at neutral pH. Its photocatalytic activity was evaluated on the photodegradation of methylene blue (MB) and diclofenac (DCF), and the generation of .OH was proven to be responsible for the oxidation processes. The synergistic effect between Fe3O4 and WO3 in the presence of light and H2O2 enhances the generation of .OH.

APPLIED MATERIALS TODAY (2023)

Editorial Material Chemistry, Physical

Fundamental insights to improve zeolite catalysts for the reduction of oxides

Mercedes Boronat

Summary: This article investigates the impact of zeolite framework topology on catalyst performance and proposes new strategies for improved material design.

CHEM CATALYSIS (2023)

Review Chemistry, Multidisciplinary

Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles

Lichen Liu, Avelino Corma

Summary: Heterogeneous bimetallic catalysts are widely used in industrial processes, but understanding the active sites in these catalysts at the atomic and molecular level is challenging due to their structural complexity. Comparing the structural features and catalytic performances of different bimetallic entities can aid in developing a unified understanding of the structure-reactivity relationships and improving current bimetallic catalysts. This review discusses the geometric and electronic structures of three representative types of bimetallic catalysts, as well as the synthesis methods, characterization techniques, and catalytic applications of these catalysts.

CHEMICAL REVIEWS (2023)

Article Chemistry, Physical

Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization

Risheng Bai, Yue Song, Ge Tian, Fei Wang, Avelino Corma, Jihong Yu

Summary: The synthesis of highly efficient nano-sized Ti-rich TS-1 zeolites with controllable titanium species is crucial in zeolite catalytic reactions. A new method was developed using tetrabutyl orthotitanate tetramer as the titanium source, which slowed down the zeolite crystallization process and prevented the formation of anatase species. The Ti-rich TS-1 zeolite prepared with this method exhibited enriched active titanium species, enlarged external surface area, and superior catalytic performance in oxidative desulfurization reactions.

GREEN ENERGY & ENVIRONMENT (2023)

Review Chemistry, Multidisciplinary

Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels

Alexandra Velty, Avelino Corma

Summary: For many years, capturing, storing or sequestering CO2 from emission sources has been an effective method for reducing atmospheric CO2. The chemical conversion of CO2 into valuable chemicals has gained much attention due to CO2's abundance and renewable nature. Catalysts, particularly zeolite and ordered mesoporous materials, play a critical role in the conversion of CO2. By studying the reactions involving these catalysts, this review aims to explore the potential opportunities for using them to convert CO2 into essential chemicals and fuels.

CHEMICAL SOCIETY REVIEWS (2023)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

暂无数据