4.8 Article

High-Rate and High-Areal-Capacity Air Cathodes with Enhanced Cycle Life Based on RuO2/MnO2 Bifunctional Electrocatalysts Supported on CNT for Pragmatic Li-O-2 Batteries

期刊

ACS CATALYSIS
卷 8, 期 4, 页码 2923-2934

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b00248

关键词

lithium-oxygen batteries; RuO2/MnO2; practical applications; monolith cathode; high areal capacity

资金

  1. Basic Science Research Program of the National Research Foundation of Korea (NRF), Korean Ministry of Science, and ICT [NRF-2014R1A2A1A11049801, NRF-2017R1A5A1014708]
  2. Engineering Research Center of Excellence (ERC) Program of the National Research Foundation of Korea (NRF), Korean Ministry of Science, and ICT [NRF-2014R1A2A1A11049801, NRF-2017R1A5A1014708]

向作者/读者索取更多资源

Despite their potential to provide high energy densities, lithium oxygen (Li-O-2) batteries are not yet widely used in ultrahigh energy density devices like electric vehicles, owing to various challenges, including poor cyclability, low efficiency, and poor rate capability, especially at high areal mass loading. Even the most promising Li-O-2 cells are unsuitable for practical applications, owing to a limited areal mass loading below 1 mg cm(-2), resulting in low areal capacity. Here, we demonstrate air cathodes of unprecedentedly high areal capacity at a high rate with sufficient cycle life for pragmatic operation of Li-O-2 batteries. A separator-carbon nanotube (CNT) monolith-type cathode of massive loading is prepared to achieve high areal capacity, but the cycle life and round-trip efficiency of CNT-only separator monolith cathodes are limited. The reversible and energy-efficient operation at high areal capacity and a high rate is enabled by adopting RuO2/MnO2 solid catalysts on the CNT (RMCNT). RMCNTs show a bifunctional catalytic effect in both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and also completely decompose LiOH and Li2CO3 byproducts that may exist in discharged electrodes. This separator-RMCNT monolith offers beneficial features such as high mass loading, binder-free, intimate contact with the separator, and most importantly, catalysts for reversibility. Together, these features provide a remarkably long cycle life at unprecedentedly high capacity and high rate: 315, 45, and 40 cycles, with areal capacity limits of 1.5, 3.0, and 4.5 mAh cm(-2), respectively, at a rate of 1.5 mA cm(-2). Cycling is possible even at the curtailing capacity of 10 mAh cm(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据